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Abstract—Federated learning has emerged as an impor-
tant paradigm in modern distributed machine learning.
However, different from conventional distributed learning,
the clients in federated learning are placed in a wild
environment where clients do not have consensus over
data, systems, privacy and others. What’s more, the
heterogeneity problems in federated learning can greatly
affect performance. Personalized federated learning is a
method to customize the models on each client and try to
find efficient and effective ways to let there clients share
particular knowledge and personalize, so as to achieve the
best performance over local data.

In this paper, we go through several representative
personalized federated learning methods, particularly over
three types: global model, local customized model and
AutoML based methods. We fairly compare these methods
on board with consideration of effectiveness, feasibility and
ubiquitousness. We also do some experiments to show that
some methods are not as effective as they were claimed
in the original papers. Then we delve deeper into the fed-
erated neural architecture search based methods and find
out it is a promising direction to solve the heterogeneity
problems despite of several drawbacks. On the basis of
that, we give out several directions for future work about
how to improve current federated NAS based methods and
make them promising. We also give out discussion about
future work on designing better personalized federated
learning methods.

I. INTRODUCTION

Federated learning [1] has emerged as an important
paradigm in modern large-scale machine learning. Un-
like in traditional centralized learning where models are
trained using large datasets stored in a central server, in
federated learning, the training data remains distributed
over a large number of clients, and these clients could be
any devices such as mobile phones, IoT services or edge
servers. In each communication round, a subset of clients
are selected to conduct local training and send updates
on models to the server. The server then aggregate their
updates and train a global model [2].

However, since these clients are local clients and
they can be any device and the communication between
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learning

clients and server is also different with the conventional
distributed learning in central server: unreliable and
unstable network connection. As a result, a key challenge
in federated learning is dealing with heterogeneity [3].
One of the typical concerns of heterogeneity is statistical
heterogeneity, where the most famous problem is the
none independent and identical distribution problem. In a
federated setting with statistical heterogeneity, different
clients can hold their own datasets and these datasets
do not follow the rule of independent and identically
distributed data. Though, it has been studied by large
ranges of researchers, it has not been well-solved. Non-
i.i.d problem makes federated learning much harder to
converge to optimization point [4] and can greatly disturb
the convergence rate.

In this paper, we will go through a wide range of
heterogeneity concerns in federated learning including:
statistical, system, privacy, model and task heterogeneity.
Table I summarizes the cause and the detailed presenta-
tion forms of these heterogeneity concerns in federated
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TABLE I
SUMMARIZATION OF FIVE TYPICAL POSSIBLE HETEROGENEITY IN FEDERATED LEARNING.

Type of Heterogeneity Causes and forms

Statistical Local datasets are of non-i.i.d, the gradients on each client diverge a lot.
System Round time on each client diverges greatly because of various computation abilities and communication contexts.
Privacy Different clients use different policy to protect privacy, for example, different gaussian noise in differential privacy.
Model Different clients use different model structures.
Task Different clients have different local objectives to optimize.

learning.
In federated learning, we narrow our scope to hor-

izontal federated learning and the conventional update
way in such setting is doing federated averaging [1].
As shown in figure 1, in each communication round the
server delivers a global model to each client, then the
client do the local training over local datasets. After that,
each client sends the trained model back to the server and
the server will aggregate these models to generate a new
global model. So, we can call this form of aggregation
the weight sharing scheme in federated averaging. Then,
naturally, we will be raised with a question:

Is the Weight Sharing Scheme in Federated Averaging
reasonable when we meet the heterogeneity?

Before answering this question, let’s see the solution
to heterogeneity, which is called personalized federated
learning where the models on the clients and the server
are no longer a same global model but they can have their
personalized parts. The start point of using personalized
learning to solve heterogeneity in federated learning
comes from the idea of applying multi-task learning into
federated learning [5]. It is useful to solve statistical
challenges and system-aware optimization after putting
multi-task learning into a distributed manner.

Many methods have been purposed via personalized
federated learning. We can divide them into three cate-
gories: global model, customized local model, and Au-
toML methods. In the global model method, the server
is the keypoint to the solution where usually, it will have
specially designed aggregation or optimization methods,
to fit a universe model suited for all clients. Normally,
after federated learning is done, clients can choose to
finetune customized models on their own datasets further.
In the customized local model method, each client owns
a model with customized weights or even a customized
model structure. In each communicate round, part of the
model on a client is only trained by itself and part of
the model is used for aggregation on the server. In these
two methods, researchers stepped forward to design and
add special regularization forms to the formulations to
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Fig. 2. The inclusion relationship of different types of personalized
federated learning methods.

achieve a better solution.
The third method is more novel where they leverage

Auto Machine Learning (AutoML) methods to let clients
and servers automatically find the suitable models and
weights for different heterogeneous settings. In this
method, the information or knowledge is no longer
shared simply in the process of weight aggregating.
Clients can share more high-level knowledge to better
customize their local models. One solution under this
method is using knowledge distillation, where each client
can have a completely different structure of models while
they share their local dataset knowledge through logits,
the same as manners of knowledge distillation. Another
more interesting solution is using Federated Neural Ar-
chitecture Search to allow users to share more diverse
knowledge through the supernet. Implicit knowledge is
shared between clients; for example, different clients will
select a different neural architecture as their local model
and this can implicitly reflect the customized information
of each client. We summarize the inclusion relationship
in figure 2.
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II. PROBLEM FORMULATION

In personalized Federated Learning, we have K clients
in total, and each client has its local objective, where we
denote it as Fi, ∀i ∈ [K]. We use wi to denote the model
weights of each client’s local model. In personalized
federated learning wi do not need to and usually not to
be the same as global weights but customized weights,
specific for each client. The problem is

min
wi

Fi(wi), ∀i ∈ [K] (1)

This is a general formulation for personalized federated
learning where we are trying to make performance on
each local dataset good.

III. EXAMINING METHODS OF PERSONALIZED

FEDERATED LEARNING

In this section, we will have a through examination
of these three approaches to solving heterogeneity and
have a fair comparison of their pros and cons. We will
compare these methods in mainly three considerations:
whether they are effective, feasible and ubiquitous. Re-
garding effectiveness, the solution should have a clear
theoretical convergence guarantee and can empirically
solve the heterogeneity problem.

Regarding being feasible, we will consider two sides.
First, the solution should have a proper cost when im-
plemented in the federated setting. And the assumptions
proposed in the papers should be reasonable in real
worlds. For example, the assumption that the server is an
oracle having all clients information is invalid. Regarding
of being ubiquitous, we will evaluate whether the method
only fits for the problem setting in the papers and the
solution is aimed for a particular kind of heterogeneity
or can solve different kinds of heterogeneity at the same
time. On the other hand, the method should be flexible
and easy to extend. For example, for method FedAvg,
we can use any model, no matter if it is a convolution
neural network, recurrent neural network, graph network
or transformer. If the method can only be applicable for a
small class of models or only one or two specific models,
it is not flexible. So, it is not feasible enough.

For evaluation of ubiquitous, we will check if each
method is applicable to the following five kinds of
heterogeneity: statistical, system, privacy, model and task
heterogeneity. Statistical heterogeneity means the clas-
sical problem of solving clients with non-i.i.d dataset.
System heterogeneity means that each client can have
different local update step [6], different local training
time and communication time due to heterogeneous
network, resources and system settings. Privacy hetero-
geneity means different clients have different privacy

budgets; for example, they can add different Gaussian
noise according to different ϵ requirement according to
differential privacy [7]. Model heterogeneity is straight-
forward: each client can hold a different structure of
local models. Task heterogeneity means that clients can
solve different tasks such as vertical federated learning or
transfer federated learning [8]. Another example of task
heterogeneity is we can consider a toy federated learning
setting where we have only three tasks: client one needs
to classify categories 1,2,3,4,5 in CIFAR10 [9], client
two needs to classify categories 6,7,8,9,10 in CIFAR10
and client three needs to classify categories 1,3,5,7,9, in
CIFAR10.

A. Global Model and Fine Tune

The simplest way for personalized federated learning
is FedAvg [4] (baseline of baselines) and actually, it
is proven that FedAvg can still converge on non-i.i.d
data: a convergence rate of O( 1

T ) for strongly convex
and smooth problems, where T is the number of SGDs.
However, such a method produced poor performance
over evaluation metrics such as accuracy. As a result,
a matter of course is to fine tune global models on
clients for several steps on the local dataset. However,
this can lead to them having poor generalization ability.
This method is simple and easy to implement, and also
ubiquitous. However, unfortunately, it is not effective
enough.

PFedMe [10] leveraged the idea in conventional non-
personalized federated learning to add a regularization
form, so as to train a global model which can be adapted
to different client. Then, they use Moreau Envelope
Algorithm to solve their formulation with regularization.
Qu et al. [11] rethink the problem in another angle.
They argue that simply changing the model from a
convolution network into a vision image transformer
(ViT) can greatly help tackle the data heterogeneity
problem in federated learning.

B. Local Customized Model

Normally, global model methods still need to fine-
tune the trained global model on their own datasets
to fully realize personalization. As a result, a more
elegant method is to encapsulate such a process into the
federated learning process. The general idea is to let the
model on clients have some parts of weights only locally
trained, which we call them personalized parts and have
some parts of weights to participate in the aggregation
in federated averaging, which we call them shared parts.

FedRep [12] define that several last layers of the
model as classifier and the rest of the models are repre-
sentation. Then, in each local training round, each client
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TABLE II
SUMMARIZATION OF SHARED AND PERSONALIZED PARTS OF A MODEL IN TYPICAL METHODS FOR IN PERSONALIZED FL.

Method Shared Parts Personalized Parts Shared Policy Shared Dimension

FedAvg [1] Whole None - Whole
Local Training None Whole - Whole

PFedMe [10] Whole None - Whole
Qu et al. [11] Whole None Use ViT models Whole

FedRep [12] Representation Classifier Manual Setting Layer
FedBabu [13] Representation None Manual Setting Layer
FedTP [14] Except Attention Maps Attention Maps Manual Setting Layer
GCN-based [15] Whole Whole GCN decided Weights
APFL [16] w̄ wloc,i αi decided Weights
L2GD [17] w̄ wi λ decided Weights
Ditto [18] w̄ wi λ decided Weights

FedHN [19] Hypernet Whole Hypernet decided None FedAvg scheme
FedPerAvg [20] Meta parameters Whole MAML decided None FedAvg scheme
PerFedCKT [21] Distilled knowledge Whole KD decided None FedAvg scheme
FML [22] Proxy global model Whole KD decided None FedAvg scheme

FedNAS [23] Global supernet Model structure DARTS decided NAS
Direct FedNAS [24] Global supernet Model structure DSNAS decided NAS
SPIRDER [25] Server’s supernet Model structure and part of the weights Progressive NAS decided NAS
FedRLNAS [26] Server’s supernet Model structure and part of the weights RL decided NAS
FedorAS [27] Whole None FedorAS search space decided NAS

will have a few more local steps to update the classifier
and only share the representation for global aggregation.
While on the other hand, FedBaBU [13] argues that,
classifier should not never be updated and we just need
to share representation in global aggregation can better
tackle the data heterogeneity problems. APFL [16] views
the shared policy in another dimension and defines the
personalized model on each client i as

wi = αiwloc,i + (1− αi)w̄ (2)

where hloc,i is the local personalized weights of the
model and h̄ is the shared global model weights. And αi

is a parameter for each client. Each client will train its
own personalized weights and also do training to con-
tribute to the shared global model weights. FedTP [14]
delves deeper particularly into the ViT and transformer
models, they only personalized the attention map of
transformer models on each client and the rest parts
remain the shared parts. Chen et al. proposed an inter-
esting GCN-method [15] to solve such problem. They
use a graph convolution network (GCN) to aggregate
each local model uploaded by each client, along with a
graph network containing the relationship between these
clients. Then, they use that GCN to generate personalized
weights for each client.

To further improve the generalization ability of models
and add constraints over the distances between model

weights. Many methods combine the technique of regu-
larization. L2GD [17] introduces the personalization of
weights on the clients through a L2 penalty parameter
and the new formulation of the problem is

min
wi

Fi(wi) +
λ

2K

∑
j∈[K]

∥wi − w̄∥2, ∀i ∈ [K] (3)

where w̄ is the shared global weights. Ditto [18] adopted
the similar formulation as L2GD but provide a better
proof of convergence and generalization ability.

C. AutoML

Local Customized Models seems to be promising
enough; however they still cannot resolve the hetero-
geneity problems well enough. This naturally arose the
question: Is the Weight Sharing Scheme the most suitable
for heterogeneous federated learning? The answer is non-
trivial and actually weight sharing neglects some impor-
tant but implicit information to share between clients,
which can possibly be critical to personalized federated
learning. As a result, a series of personalized federated
learning methods based on AutoML are proposed to dig
out implicit information.

Instead of doing aggregation on the server,
FedHN [19] uses a hypernet on the server which
inputs are embedding vectors representing each client
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TABLE III
EVALUATION TYPICAL METHODS IN PERSONALIZED FEDERATED LEARNING CONSIDERING EFFECTIVENESS, FEASIBILITY AND

UBIQUITOUSNESS.

Method Theoretically
effective

Empirically
effective

Cost
feasible

Extension
feasible

Ubiquitous
(Statistical, System, Privacy, Model, Task)

FedAvg [1] ✓ ✓ ✓ ✓ (×, ×, ×, ×, ×)
Local Training ✓ ✓ ✓ ✓ (×, ×, ×, ×, ×)

PFedMe [10] ✓ ✓ ✓ ✓ (✓, ×, ×, ×, ×)
Qu et al. [11] ✓ ✓ ✓ ✓ (✓, ×, ×, ×, ×)

FedRep [12] ✓ ✓ ✓ ✓ (✓, ×, ×, ×, ×)
FedBabu [13] × ✓ ✓ ✓ (✓, ×, ×, ×, ×)
FedTP [14] × ✓ ✓ × (✓, ×, ×, ×, ×)
GCN-based [15] × ✓ × × (✓, ×, ×, ×, ×)
APFL [16] ✓ ✓ ✓ ✓ (✓, ×, ×, ×, ×)
L2GD [17] ✓ ✓ ✓ ✓ (✓, ×, ×, ×, ×)
Ditto [18] ✓ ✓ ✓ ✓ (✓, ×, ×, ×, ×)

FedHN [19] × ✓ ✓ × (✓, ✓, ✓, ✓, ✓)
FedPerAvg [20] ✓ ✓ ✓ ✓ (✓, ×, ✓, ×, ×)
PerFedCKT [21] ✓ ✓ × ✓ (✓, ✓, ✓, ✓, ×)
FML [22] × ✓ ✓ ✓ (✓, ✓, ✓, ✓, ✓)

FedNAS [23] × ✓ × ✓ (✓, ✓, ✓, ✓, ✓)
Direct FedNAS [24] × ✓ × × (✓, ✓, ✓, ✓, ✓)
SPIRDER [25] × ✓ × × (✓, ✓, ✓, ✓, ✓)
FedRLNAS [26] × ✓ × × (✓, ✓, ✓, ✓, ✓)
FedorAS [27] × ✓ × × (✓, ✓, ✓, ✓, ✓)

and the hypernet will directly output the personalized
weights for each client. However such a hypernet
cannot be easily trained. FedPerAvg [20] innovatively
introduces a model-Agnostic meta-learning (MAML)
method to train and learn meta parameters. Then
each client uses these meta parameters to generate
the personalized model weights. PerFedCKT [21]
leverages another way for weight sharing. Clients no
longer update the trained model weighs. Instead they
update the logits to the server and the server downloads
the loss to clients. The clients use these losses to
train personalized models with methods of knowledge
distillation (KD). However the drawback is that to do
knowledge distillation, the server and the clients should
both hold the same public datasets. FML [22] also
leverages knowledge distillation methods. But different
from previous methods, they assign a personalized
model on each client and there is also another shared
global model for aggregation. The knowledge distillation
is conducted locally, between each personalized model
and the shared global model on each client. In this way,
no further public datasets are needed and each client
can hold models of different structures and weights,
which is a better method comparing to PerFedCKT.

Besides, Meta Learning and Knowledge Distillation,
there exists a new kind of AutoML, personalized feder-

ated learning, what we call it FedNAS, which allows the
clients to decide the structure of their local models and
the parts of weights to be shared automatically. We will
discuss this detailedly in the next section.

IV. NEW AGGREGATING SCHEME: PERSONALIZED

FEDERATED NAS (PERFEDNAS)

A. Neural Architecture Search

Neural Architecture Search (NAS) is a powerful tool
for automating efficient neural architecture design. It
often targets at searching for the best model in a search
space under given efficiency-related constraints. A par-
ticular promising NAS scheme is one-shot supernet-
based NAS, where the search space is a very big super
net that can directly output targets. The candidate net-
works are a subset of the supernet, and once the supernet
is fully trained, we can directly sample a subnet as a
trained model instead of retraining that model in a two-
stage NAS. It has been a normal method to use supernet-
based NAS in computer vision [28, 29, 30, 31, 32]. Here,
we introduce some popular supernets in previous NAS
works.

NASVIT [28] is a one-stage one-shot supernet
based neural architecture search where a huge over-
parameterized supernet is firstly well-trained and then
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they use a random forest model to search for the best
model structure. DARTS [29] is another supernet based
neural architecture search. It uses a method of differential
gradients method to solve NAS problem where the ar-
chitecture parameters can be directly optimized through
the backward chain rule from the loss. Figure 3 shows
the search space of these two popular supernets and we
can see different neural architecture search methods have
different definition on the search space and the NAS
related works are also fast evolving. There also exist a lot
of other NAS work and they are not limited to computer
vision area, also including natural language processing,
graph areas and these wide areas of NAS all have good
applications.

B. Federated Neural Architecture Search and Personal-
ized federated neural architecture search

Federated neural architecture search, though is not ini-
tially designed for solving personalized federated learn-
ing, is powerful in solving such a problem. In federated
neural architecture, which parts of the model should be
personalized, which parts of the model should be shared
and for the shared parts, they are shared among which
clients can be automatically searched in the framework
without any manual interference.

Figure 4 shows the framework of general personalized
federated neural architecture search. The server will hold
a very huge over-parameterized supernet and in each
communication round it will send the supernet or the
subnet depending on the detailed algorithm. After local
training, the clients will report the trained weights along
with some feedback. Then the server will use them to
do specific algorithm.

FedNAS [23] is the first work to apply neural ar-
chitecture search into federated learning setting. They
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Fig. 4. The framework of general personalized federated neural
architecture search

directly replace the traditional model with the DARTS
supernet and send the whole huge supernet between the
clients and the server. Direct FedNAS [24] is similar
to the original FedNAS, but they change the search
space into a more efficient search space DSNAS [33].
SPIRDER [25], also assigns the whole NAS supernet
to each client and each client will first do NAS locally
over local datasets and the server use a progressive NAS
method to aggregate these supernets instead of federated
averaging. FedRLNAS [26] is the first work that the
server only sends the subnet to the clients and the clients
do the local training and updating with subnets, the
same as in FedAvg. The FedRLNAS pipeline has three
stages: warmup, searching and training. FedorAS [27]
improves the FedRLNAS with only having one stage
in the pipeline. After the federated neural architecture
searching is done, we can obtain a global model. They
do not need a warmup and re-training phase.

Existing federated NAS work provides a good direc-
tion to solve heterogeneity in federated learning. On
the other hand, they still exist several drawbacks which
make them still cannot work as feasibly as the methods
introduced in the last section.

Pros:

1) First, federated neural architecture search has a
natural advantage to assign model of any structures
to each client. As a result, clients can have the
maximum flexibility to hold different models so
as to solve different heterogeneity objectives.

2) Second, federated neural architecture search lever-
age an automatic way to find how to do the weight
sharing. This kind of weighted sharing policy can
help such methods achieve the best performance.

3) Third, federated neural architecture search adopt
another scheme of aggregation on the server in-
stead of averaging aggregation. The new aggrega-
tion methods can jump out of the box and provide
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more space for future researchers to find new
promising algorithms.

Cons: However, existing FedNAS papers have three
problems.

1) First, FedNAS [23], Direct FedNAS [24], Fedo-
rAS [27], and FedRLNAS [26] only searched a
global model for all clients and relied on further
local fine-tune. This scenario makes them cannot
fully take advantage of federated NAS and loses
the meaning of doing that. Though indeed through
NAS, they can find a better model architecture and
train better weights, which can improve the global
accuracy, they just replicate the advantage of NAS
in centralized NAS onto federated learning. But
not take the advantage of federated NAS into
federated learning.

2) Second, other work such as SPIRDER [25], Fed-
NAS [23] directly conducted neural architecture
search on clients. In federated learning settings, the
devices’ resources can be constrained and neural
architecture search needs large computation re-
sources. It is infeasible in a real system to conduct
a heavy NAS workload on clients.

3) Third, which is also the most constrained point of
current federated NAS method, is they are lack
of flexibility. In each work of federated NAS,
they define a specific NAS search space and their
methods can be only applicable over such search
space. If we want to use another search space,
for example replace the DARTS search space with
NASVIT, FedRLNAS may not work. However, as
we have mentioned that the NAS search space
evolves very fast, if the current federated NAS
methods cannot adapt to new NAS search space,
the problems it can solve will be very limited. As
a result, a new federated NAS which allows such
flexibility should be proposed.

V. SUMMARIZATION

The key to solve the heterogeneity problems in fed-
erated learning is how to design a good personalized
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weight sharing policy. Table II summarizes the how
each existing method design the weight sharing policy,
and how each method define the shared parts of the
models and the personalized parts of the models on
each client. Different methods use different sharing di-
mensions. As shown in figure 5, layer dimension means
some layers of the model is used as the shared parts and
other layers are used as the personalized part. While for
weights dimension, we both have a shared model and a
personalized model and use some factors to add them
with weights like 0.3 and 0.7 here. For NAS sharing
dimensions and those methods not using the FedAvg
scheme, the sharing can happen at arbitrary dimensions.
Also, different methods use a different policy to assign
the shared and personalized parts of the model. As we
can see, some methods use manual setting while other
methods use some parameters to optimize and decide
such things. However, a natural question arises:

Can we use some automatic way to directly assign the
shared policy based on our objective?

Among these methods, a promising answer is the
method of AutoML, where we automatically search for
the shared policy. As a result, if we want to solve
the heterogeneity problems in personalized federated
learning, we should design a method, which can provide
the clients as much flexibility as possible to design their
search policy and optimize directly by the clients and
the server, instead of using any manual settings.

Back to our three considerations for evaluating meth-
ods, we now compare these methods of effectiveness,
feasibility and ubiquitousness. Table III summarizes the
comparison of all personalized federated learning meth-
ods mentioned in this paper. The common problem with
conventional personalized federated learning methods is
their lack of ubiquitousness. Actually, though in their
papers, they argue that they can tackle the statistical
system. I also tried some of these methods.

Experimental evaluation of typical personalized
federated learning methods. Here we use the dataset
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CIFAR10 [34]. We control the statistical heterogeneticity
of CIFAR10 by randomly partitioning samples with
the same label among clients according to Dirichlet
distribution with parameter α = 0.3. And we also use
the dataset CIFAR100 [34] with parameter α = 0.1. In
the implementation, we use 100 clients and during each
communication round 5 clients are sampled. We con-
ducted 5 epochs of local training over the local datasets.
As CIFAR10 and CIFAR100 have 60000 samples, we
sample 600 samples on each client, and 500 of them are
used for training and the rest are used for validation to
report the accuracy. We use the MobileNetV3-Large [35]
model as the backbone network, which is one of the
state-of-the-art model in federated learning settings. The
training hyper-parameters are the same as those reported
in the MobileNetV3 paper except the batch size is 32.
Due to the time limitation, I only ran the experiments
each once but with a fixed seed. I used the open source
federated learning framework plato12 to do the simu-
lation experiments. Plato a new software framework to
facilitate scalable federated learning research. I report the
mean accuracies and standard deviation over these 100
clients and also the overall wall clock training time. As
shown in figure 6 and figure 7, the improvements over
FedAvg are minor. While on the other hand, most of
them are easy to extend with different model structures.
Regarding AutoML methods except FedPerAvg, they
are well ubiquitous but are lack of theoretical analysis.
Regarding federated neural architecture search based
methods, we will later discuss these drawbacks detailedly
and how to solve them.

VI. DISCUSSION AND FUTURE WORK

From analysis over previous methods in personal-
ized federated learning, we can see there exist various
drawbacks in different methods. Among these methods,
though federated neural architecture search based exist
drawbacks, they still provide a promising direction for
designing next generation personalized federated learn-
ing algorithms to solve heterogeneity problems. As a
result, I would like to provide several insights about
how to improve the existing federated neural architecture
based methods and solve existing problems.

Algorithm 1 is the improved PerFedNAS algorithm.
We still hold a huge supernet on the server. While during
each communication round, the server should only assign
a small sampled subnet instead of the complete supernet
the the clients. The client then can use the small subnet
to do local training. In this form the communication

1https://platodocs.netlify.app/
2https://github.com/TL-System/plato

Algorithm 1 Improved PerFedNAS
Input: N clients, with objective functions Fi,∀i ∈
[N ].
Initialize supernet A0.
for each round r = 1 · · ·R do

On Server:
sample clients N ⊆ {1 · · ·K}
each client weight wi ← Sampled subnet from A)
and send.
On Client:
for on client i ∈ N parallel do

Conduct Local Update with objective function Fi.
end for
On Server:
Receive wi and calculate score ri, i ∈ N .
Aggregate wi to update A.
Use ri to do some NAS related operations.

end for

and computation overhead for the clients are just the
same as those in the FedAvg. Then the clients report the
feedback and the client weights back to the server. The
server should design a particular algorithm to compute a
score ri for each client and design a particular policy for
each client, so as to let each client hold different models
instead of still using a global model. In this way, we can
solve the problem of only searching a global model and
directly conducting NAS on the clients.

Such an algorithm only solves the problem of cost
infeasibility. As a result, regarding the future work. We
still have two points that need to be improved.

• Provide a theoretical analysis about convergence
guarantee. The lack of convergence analysis is a
common drawback for all existing federated neural
architecture search work. As a result, providing a
theoretical analysis would be a promising direction
for future work.

• Make the framework extension feasible. As we
have discussed, NAS are fast evolving. Hence, how
to design an algorithm that can be applicable to
wide ranged or arbitrary NAS search space is an
important future direction.

Besides, these work, there also exist another interest-
ing problem for federated neural architecture search. For
future work, we can design a special neural architecture
search space or supernet in particular for federated
learning. Different from centralized NAS search space,
there exist specific challenges in federated learning, for
example, the heterogeneity which is the main challenge
we have discussed in this paper. It would be an interest-
ing and promising direction to design a special search
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space which is more privacy preserving or more efficient
or maybe can yield higher performance.

Although in this paper, we put more emphasis on
the federated neural architecture search based methods
than other AutoML methods such as methods using
meta-learning, hypernet and knowledge distillation. It
is also an interesting problem that if we can leverage
these useful AutoML tools to solve the problem. For
example, how to design a promising hypernet to generate
model weights so as to make it extension feasible. Also,
for example, FML is a promising method leveraging
knowledge distillation and how to provide a theoretical
analysis in the future work is waiting to be answered.
We can also explore the infinite possibilities of these
AutoML methods.

Another problem we have discussed is that different
methods have their own definitions in heterogenous
settings. And as shown in our tiny experiments, some
methods which are claimed useful in their papers actually
do not perform so well in simulation tests and can
provide minor improvements over baselines. As a result,
a promising future work would be to create a fair
benchmark and federated learning settings particularly
for personalized federated learning and we have a fair
benchmark to compare these methods numerically on
board.

VII. CONCLUSION

In this paper, we study the problem of how to solve
general heterogeneity problems in federated settings. We
investigate through three types of personalized federated
learning methods to solve such problem, which are
global model, customized local model and AutoML-
based methods respectively. We fairly compare these
methods considering their effectiveness, feasibility and
ubiquitousness. We also show through the experiments
that conventional personalized federated learning are not
so effective as they claimed as. Among these three
methods, AutoML-based methods are the most promis-
ing one. In particular, we find that federated neural
architecture search methods are one future direction to
solve heterogeneity despite existing limitations. Based
on that, we propose several possible directions for the
future study of personalized federated learning and how
to solve heterogeneity problems in federated learning.
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