
Towards Hybrid Fuzzing with Multi-level Coverage
Tree and Reinforcement Learning in Greybox Fuzzing

Dixi Yao
University of Toronto

Toronto, Canada
dixi.yao@mail.utoronto.ca

Kai Shen
University of Toronto

Toronto, Canada
kai.shen@mail.utoronto.ca

Xiaochong Wei
University of Toronto

Toronto, Canada
xiaochong.wei@mail.utoronto.ca

ABSTRACT
Coverage-guided greybox fuzzing is considered the state-
of-the-art testing technique in vulnerability detection. As
for the promising vulnerability detection technique, we ad-
dress that there are still two challenges to be resolved for
better performance. On the one hand, code coverage metrics
should be more informative to distinguish between various
program executions. On the other hand, seed scoring algo-
rithms should be well-designed for a better balance between
seed exploration and seed exploitation.
In this paper, we propose a two-fold hybrid solution to

tackle these unresolved challenges. We leverage a multi-level
coverage tree to take advantage of various coverage metrics
with efficiency. Meanwhile, state-of-the-art reinforcement
learning algorithms are being leveraged for intelligently scor-
ing the seeds. Evaluations of our work are conducted on a
lightweight JSON parser benchmark, which is implemented
for experiments under low computation budgets. More im-
portantly, it reveals the superiority of our approach on the
basis of unique crashes, unique hangs, and total covered
paths.

KEYWORDS
Coverage-guided greybox fuzzing, multi-level coverage met-
rics, reinforcement learning

1 INTRODUCTION
Coverage-guided greybox fuzzing [18] is considered as the
state-of-the-art testing technique in vulnerability detection.
It has been widely adopted in realistic software vulnerability
detections to successfully find tens of thousands of bugs. Dif-
ferent from traditional fuzzing paradigms, coverage-guided
greybox fuzzing, empowered by real-world fuzzing observa-
tions, was proposed and has received a tremendous amount
of research attention from academia and industry alike. For
instance, American Fuzzy Loop (AFL) [29] is responsible
for the discovery of hundreds of notable vulnerabilities and
other interesting bugs in many applications [11], has helped
make countless non-security improvements to core tools,
and has a large community of security researchers involved
in extending it.

As an emerging fuzzing solution, the essence of the coverage-
guided greybox fuzzing design philosophy is distinguished
mainly in two aspects. On the one hand, it tracks code cover-
age information and utilizes it to guide future fuzzing. On the
other hand, it leverages lightweight instrumentation tech-
niques to determine a unique identifier for the path that is
exercised by an input with negligible computation overhead
[1]. Since the proposed coverage-guided greybox fuzzing has
evolved for many years and it is easy for deployment, it has
become the mainstream with both satisfactory effectiveness
and high efficiency.
While coverage-guided greybox fuzzing is a promising

vulnerability detection technique for most popular software
applications, there is still a lot of room for optimization that
remains to be resolved even in state-of-the-art frameworks.
As such, existing coverage-guided greybox fuzzing faced
the following two challenges. Firstly, the coverage metrics
used by current coverage-guided fuzzers should be more
informative to distinguish different program executions as
long as those executions achieve the same coverage under
the given metric. That is, coverage inaccuracy could cause
fuzzers to fail to differentiate between two different program
paths in some cases, which may further lead to the neglect
of potential vulnerabilities. Specifically, when a test case is
exercising a new path that collides with a previously explored
path, the coverage-guided fuzzer will wrongly classify the
path as not interesting, then miss the chance to examine the
test the path or its closely related path. As a result, inaccurate
coverage information will cause a potential loss while its
goal is to find a complete collection of vulnerabilities. In
short, we argue that most of the current fuzzers usually only
considers a onefold code coverage metric, which may be
coarse-grained or fine-grained, and it can not avoid from the
performance suffering because of some critical information
loss.
The second challenge is the dilemma of the trade-off be-

tween seed exploration and seed exploitation. It is worth
noting that in greybox fuzzing, the task of seed exploration
aims to select as many new seeds as possible, while seed
exploitation targets on sticking fuzzing a few interesting
seeds rather than preferring new seeds. Therefore, on the
one hand, fresh seeds that has rarely been fuzzed may lead

ECE 1776, December 2022, Toronto, ON, CA Dixi Yao, Kai Shen, and Xiaochong Wei

to surprisingly new coverage [3]. On the other hand, a few
valuable seeds that have led to significantly more new cov-
erage than others in recent rounds encourage to focus on
fuzzing them [26]. Hence, traditional hand-crafted seed scor-
ing algorithms are not intelligent enough to meet the need
for large amounts of scenarios for satisfactory generaliza-
tion capability, and more intelligent and time-varying seed
scoring algorithms have become an urgent need.

In this paper, we present a promising solution to solve the
existing challenges in the area of coverage-guided greybox
fuzzing. We aim to address two parts of the improvements
as a hybrid solution to solve the difficulties separately. For
the first part, we leverage a more fine-grained multi-level
coverage tree so as to allow the fuzzer to detect bugs that
cannot be covered by traditional coverage metrics. It is worth
noting that the multi-level coverage tree can be constructed
with flexibility to better accomodate different vulnerability
detecting scenes. For the second part, we apply reinforce-
ment learning algorithms to replace traditional hand-crafted
seed scoring policies. Thanks to the great learning ability
of state-of-the-art reinforcement learning algorithms, it can
outperform existing seed scoring algorithms to achieve a bet-
ter balance between seed exploration and seed exploitation.

Contributions are listed as follows:

• We leverage a more fine-grained multi-level coverage
tree as the code coverage metric, which makes the
coverage metrics more informative to be able to avoid
missing potential vulnerabilities.
• We utilize state-of-the-art reinforcement learning algo-
rithms to replace the traditional seed scoring policies,
which empowers the fuzzer the achieve a better trade-
off between seed exploration and seed exploitation.
• To better evaluate our proposed solution within lim-
ited computation budget, we implement a simple and
lightweight JSON parser benchmark.
• We evaluated our prototypes with different parameter
settings based on our benchmark. The results show the
effectiveness and superiority of the hybrid framework
of both multi-level coverage trees and reinforcement-
learning-based seed scoring algorithms.

The remaining of this paper is organized as follows. Sec-
tion 2 demonstrates the background and related work of
coverage-guided greybox fuzzing. Section 3 illustrates the
system design of our solution, which includes overview,
multi-level coverage tree, and seed score policy based on
reinforcement learnings. Section 4 details explains our eval-
uation, including the implemented lightweight benchmark
and the conducted experiments. Section 5 concludes our
learned lessons from ECE 1776, Computer Security, Cryptog-
raphy and Privacy. Lastly, we present the conclusion of this
paper in Section 6.

2 BACKGROUND AND RELATEDWORK
2.1 Fuzzing
Nowadays, fuzzing [13, 14] has become the most effective
and efficient state-of-the-art vulnerability discovery solution
[7]. In programming, fuzzing is an automated software test-
ing technique that involves providing invalid, unexpected,
or random data as inputs to a program for testing. Mean-
while, the program is under monitoring for exceptions such
as crashes or memory leaks. More specifically, fuzzers will
schedule and mutate a huge amount of testcases, then feed
them to the target application for examination while the
application’s runtime execution states are being monitored
for reporting the potentially detected bugs.

In general, fuzzers can be categoried in two types in terms
of their test case generation approaches: grammar-based
fuzzer too long [8, 10, 25] and mutation-based fuzzer [7,
24, 26]. The former leverages a known input grammar to
generate test cases. However, it is not a mainstream approach
as it requires much handcraft work for the translation of
input grammars, and the more severe problem lies in the fact
that it can not achieve its goal without the given grammar.
On the contrary, mutation-based fuzzers canmutate testcases
based on the existing seeds without the dependency on a
pre-defined grammar. Hence, it is widely adopted in realistic
fuzzing campaigns with simplicity and scalability. However,
most of the mutation-based fuzzers are restricted by their
poor code coverage informations [15].

2.2 Coverage-guided Fuzzing
To solve the poor coverage information problem of mutation-
based fuzzing, one popular solution has been proposed and
been proved effectively in finding many serious bugs in real
software, which called coverage-guided fuzzing [16, 23]. In
coverage-guided fuzzing, a fuzzing process maintains an
input corpus containing inputs to the program under consid-
eration [17]. Meanwhile, random changes are made to those
inputs according to some mutation procedure, and mutated
inputs are kept in the corpus when they exercise new cover-
ages. In other words, this state-of-the-art solution achieves
success by employing an evolving algorithm to drive fuzzers
towards a high code coverage. Moreover, the most popular
coverage-guided fuzzers for computer programs includes
AFL [29], libFuzzer [22], and VUzzer [20].

As coverage metrics act as an important role in the fuzzing
process, we investigated some popular coverage metrics. It
is pointed out that when a coverage metric measures more
fine-grained coverage information (e.g., edge coverage), it
can dim the coarse-grained diversity (e.g., block coverage)
among different seeds. However, a more fine-grained cov-
erage of information will lead to more sensitivity, which
means deeper exploration along the current path rather than

Towards Hybrid Fuzzing with Multi-level Coverage Tree and Reinforcement Learning in Greybox Fuzzing ECE 1776, December 2022, Toronto, ON, CA

trying new paths. Thus, a ultimate goal is to carefully craft
the seed scheduler to strike a balance between exploration
and explication [30]. For instance, Bohme et al. [2] model
the minimum effort to discover a neighboring seed as the
required computation power, which can successfully use
less power to make progress under a more sensitive cover-
age metric. However, each seed only carries a small step of
progress, the accumulation of them can narrow the search
space even faster.

2.3 Greybox Fuzzing
In addition to the aforementioned fuzzer classification, we
also distinguish fuzzing styles based on another dimension,
which is the degree of program analysis. There are three
categories under this classification standard. The first one
is black-box fuzzing [6, 28] which regards the program as a
black box and only requires it to execute. The second type
of fuzzing is white-box fuzzing [3, 5, 9, 24], which is based
on symbolic execution and requires heavy-weight program
analysis without the guarantee of unconstrained problem
solving within a limited regime.

Greybox fuzzing [4, 19] is placed in-between the black-box
fuzzing and the white-box fuzzing, and it only requires light-
weight instrumentation to glean some program structure [1].
It outperforms black-box fuzzing with higher effectiveness
because of more information about the internal structures,
and outperforms white-box fuzzing with higher efficiency as
a result of the reduction of the time-consuming heavy-weight
program analysis. More specifically, greybox fuzzing acts as
a trade-off between black-box fuzzing and white-box fuzzing,
and the most distinctive step of greybox fuzzing is that, when
executing a newly generated input, the fuzzer applies light-
weight instrumentations to capture runtime features and
expose them for further quality scoring of a generated test
cases [26].

In more details, given a program to fuzz as well as an ini-
tial set of seeds, the greybox fuzzer will conduct a fuzzing
process, which consists of a number of loops. In each loop,
the fuzzer begins by selecting the following seed for fuzzing
from the pool according to the scheduling criteria. Next, the
scheduled seed will be assigned to a setted amount of com-
putation budget and generate test cases as much as possible
without exceeding the budget of this round. Lastly, test cases
will be generated through mutation and crossover based on
the scheduled seed [26].

2.4 Coverage-guided Greybox Fuzzing
As the classification methods mentioned above are orthogo-
nal, coverage-guided greybox fuzzing has become the main-
stream solution. It is an evolutionary process that maintains
and evolves a population of test cases with the help of a

2) Seed Mutation

1) Seed Scheduling

3) Seed Selection

Seed

Testcase

Instrumented
Program

Fitness

Function

New

Seed

Seed Pool

Figure 1: The Workflow of Coverage-guided Greybox
Fuzzing

Root

M1M1M1M1

M2 M2M2M2 M2 M2 M2 M2

M3
 M3
 M3
M3
 M3
M3
 M3
......

Block Coverage

Edge Coverage...

...

Figure 2: Themulti-level coverage treewith three levels
of measurements

fitness function, where the fitness function is used for decid-
ing the quality of a given test case. Famous coverage-guided
greybox fuzzer like AFL [29] and LibFuzzer [22] realized light-
weight instrumentation to gain coverage information. For
instance, AFL captures basic block transitions along coarse
branch-taken hit counts in its instrumentation module. Fur-
thermore, coverage-guided greybox fuzzing utilizes the cov-
erage information to decide which generated inputs to retain
for fuzzing and which input to fuzz next and for how long.
As illustrated in Figure 1, the workflow of the coverage-

guided greybox fuzzing has three main stages, and it gener-
ates seeds incrementally via the demonstrated feedback loop.
The first stage is named seed scheduling, where a seed will be
picked from a set of seeds according to the given scheduling
criteria. Next, a seed mutation stage will be performed. In the
second stage, new test cases will be generated by performing
various mutations on the scheduled seed within a limited
time budget. The last stage is named as seed selection, where
each generated test case will be fed to the target program
under test and evaluated based on the pre-defined cover-
age metric. It is worth noting that if the generated test case
leads to a new coverage, it will be selected as a new seed.

ECE 1776, December 2022, Toronto, ON, CA Dixi Yao, Kai Shen, and Xiaochong Wei

Hence, as the feedback loop continues, more coverage will
be reached, and hopefully, a test case will trigger a bug. Al-
though coverage-guided greybox fuzzing has drawn plenty
of interests from both academia and industry, we argue that
current fitness function still need to be more informative so
as to distinguish more different executions, especially when
some execution paths achieve the same coverage.

3 SYSTEM DESIGN
3.1 Overview
To allow a fuzzer to detect bugs that cannot be covered by
traditional coverage metrics and have a better tradeoff be-
tween exploration and exploitation. We produced two im-
provements over the basic AFL++: Integrating a multi-level
coverage tree and improving the seed score policy. We will
first introduce the overview design of multi-level coverage
tree [26] and then devel deeper into a very important factor
which can strongly impact the effectiveness of such tree, the
seed-score policy and discuss how to improve such policy
with our novel reinforcement learning-based method.

3.2 Multi-level Coverage Tree
First, to detect more bugs, we leverage a multi-level cover-
age tree. In the multi-level coverage tree, there are many
levels, which map to different measurements of coverage
metrics. Each level can represent a grain level of coverage
for example, the block coverage, the edge coverage and the
distance metric coverage. Each time we generate a new test
case based on the current seed, we will put the seed into the
coverage tree based on the coverage. If a test case is assessed
as exercising a new coverage by any of the measurements,
it will be retained as a new seed and put in a proper clus-
ter. The top-level measurement directly classifies all seeds
into different clusters. Lower-level measurements work on
each of the clusters generated by its parent node separately,
classifying the seeds in it into smaller sub-clusters. Figure 2
shows a multi-level coverage tree with three levels.

For example, as shown in the figure 3. In each new run of
instrument with a test case. First, we find if there is new block
coverage and then check which block coverage it belongs to
and put it on the subtree. Then we check level two of edge
coverage and finally, we check which distance-based metric
coverage it belongs to. By referring to distance-based metric
coverage, it means the length between the last entry point
and the current jumping edge. Thenwe place this seed on one
of the leaf nodes. By the next time we want to exploit, we can
select a seed from this tree based on current requirements.

3.3 Seed Score Policy
As we find during the clustering phase, it is important to
correctly evaluate the seed. The good seed can lead to better

Input:

Test Case

Fuzz:

RunWithInstrument

Program
Edge/Block

...

Coverage

Test
Case

Coverage

MeasureMents:

Distance:
Hamming

Memory:

R&W

Access

Existing:

Return Known

Level M1 Map to Next
Cluster

Then: Move Test Case

Into Next cluster

Not Exist?

Create New

Current Cluster-> Next
Cluster

Level M2

Level Mn
...

Return: New Coverage Explored

Function
Coverage

Edge
Coverage

Figure 3: The flowchart of using seed clustering to do
seed selection

cases where we can find more unique bugs. As a result, to
evaluate whether a seed is good enough, we usually have a
score policy. Then the fuzzer will be more prone to choosing
those seeds with higher scores to generate new test cases
during exploitation. In this section, we will first introduce
the initial design of seed policy in AFL++ and then introduce
our novel seed policy.

3.3.1 Preliminaries. In the original design of AFL++, it used
mainly four metrics to evaluate the score of the seed:
• exec_us: The execution time of each test case.
• bitmap_size: The bitmap size of the test case.
• handicap: Handicap is proportional to how late in the
game we learned about this path.
• depth: The depth of the current path, under the as-
sumption that fuzzing deeper test cases is more likely
to reveal stuff that can’t be discovered with traditional
fuzzers.

Then it will first set the default score value to 100 and then
manually using many if conditions to modify the score on
basis of each metric. For example, as shown in the example
code 1, it will first compare the execution time with the
average execution of all test cases, and change the perf score
on basis of their ratio. However, such a setting lacks flexibility
as there are a lot of manual settings. We need to first set
several compare zones and then set how much we need
to modify the performance score on the basis of human
experience. First, bymanually setting these hyperparameters,
it is very hard for us to find the best hyperparameters.What’s
more, even if the set of hyperparameters is the best for the
current fuzzed program, there is no guarantee it will fit to
another program. For another program, we many need to
change another set of hyperparameters.

Towards Hybrid Fuzzing with Multi-level Coverage Tree and Reinforcement Learning in Greybox Fuzzing ECE 1776, December 2022, Toronto, ON, CA

Listing 1: Original design of function calculate_score().
u32 calculate_score(afl_state_t *afl, struct

↩→ queue_entry *q) {

u32 avg_exec_us = afl->total_cal_us / afl->
↩→ total_cal_cycles;

u32 avg_bitmap_size = afl->total_bitmap_size
↩→ / afl->total_bitmap_entries;

u32 perf_score = 100;
/* Modify perf score based on execution time

↩→ */
if (q->exec_us * 0.1 > avg_exec_us) {

perf_score = 10;
}
else
........
/* Modify perf score based on bitmap size */
if (q->bitmap_size * 0.3 > avg_bitmap_size)

↩→ {
perf_score *= 3;

}
else
.......

}

3.3.2 Distance metric-based score policy. The first improve-
ment is on the basis of distance metric, where we still use
these four metrics but greatly decrease the numbers of hy-
perparameters. We directly use the similarity and distance
between the current test case and the average test case to
calculate the score. We can define such two vectors, the first
vector 𝑠0 is:

𝑠0 = (avg_exec_us, avg_bitmap_size, 0, 0) (1)

, which represents the average test case and 𝑠𝑞 is:

𝑠𝑞 = (𝜆1∗exec_us, 𝜆2∗bitmap_size, 𝜆3∗handicap, 𝜆4∗depth)
(2)

, which represents the current test case, where 𝜆s are four
hyperparameters. Then we use the ratio between these two
vectors to represent the distance between the current test
case and the average case with such an equation:

perf_score = 100 ∗
||𝑠𝑞 | |2
| |𝑠0 | |2

(3)

We call this method manual tuning as we still need to manu-
ally tune (𝜆1, 𝜆2, 𝜆3, 𝜆4).

3.3.3 Reinforcement learning-based score policy. To further
help the fuzzer adapt to the score policy, we developed a
reinforcement learning-based score policy. During each run
of a test case, the fuzzer will use a reinforcement module
to automatically tune the 𝜆 based on current run and find

the best score policy automatically. As we can see from the
overall flow of each run of the testcases, it can be naturally
formulated as a markov decision process (MDP). As a result,
we first formulate the problem into an MDP.

In each run of the instrument, the state is the 𝑠0 and 𝑠𝑞 ,
and each action is simply having the run of the current test
case. Then we define the reward on the basis of whether
the new test case invokes new hangs or new crushes. For
example, if the new test case invokes new hangs and new
crushes at the same time, the reward is set to 𝑎. If either one
of them is invoked, the reward is set to 𝑏, otherwise it is set
to 𝑐 .
Then, the core part of our method is how to design the

policy network, we set the original hyperparameter 𝜆 as the
parameter of the policy network 𝜋𝜆 (𝑠𝑡 = (𝑠0, 𝑠𝑞), 𝑎𝑡 = 𝑎).
And then we can use the policy gradient to update the 𝜆 on
basis of reward during with each run of the test case.

∇𝜆 𝐽 (𝜆) = E𝜆 [𝑠𝑡 = (𝑠0, 𝑠𝑞) |𝑎𝑡 = 𝑎]
= E𝜆 [𝑅 ∗ ∇𝜆perf_score]

= 𝑅 ∗ 100
| |𝑠0 | |2

∇𝜆 | |𝑠𝑞 | |2

=
100𝑅

| |𝑠0 | |2 | |𝑠𝑞 | |2
· 𝑠𝑞

(4)

We can calculate the analytic solution of the gradient and
during the actual implementation, we directly embed such
policy gradient and the calculation of the gradient in the C
language in the AFL++ and compile it. In the actual imple-
mentation of the fuzzer we use the unsigned 32 to calculate
them which is easy to implement and we update the policy
network with SGD optimizer where learning rate is set to 0.1
by default. The overall algorithm of our method is shown in
Algorithm 1, the loop is straightforward and in each round of
fuzzing, we first get the four metrics and update the average
vector 𝑠0. Then we update the policy network and calculate
out the adapted performance score for each test case, so as
to better evaluate the seed.
In our method, we only use the method of policy gradi-

ent to test the effectiveness of reinforcement learning-based
score policies. While actually, the update of the reward can
be very sparse. Because hangs and crashes actually happen
occasionally, the occurence of reward 𝑐 is much more than
the occurence of 𝑎 and 𝑏. As a result, policy gradients can-
not be the best reinforcement learning method. However,
here we want to show how a automatical method can help
improve our system and in the latter part, we can see that
even if we only use the policy gradient method, it can still
bring much benefits. We also encourage readers to try other
methods such as PPO [21], Q-learning [27] or propose other
novel method to resolve the problem of spare rewards and
try other optimizers like Adam [12].

ECE 1776, December 2022, Toronto, ON, CA Dixi Yao, Kai Shen, and Xiaochong Wei

Algorithm 1 The fuzzer with reinforcement learning-based
score policy

Input: The fuzzer.
Output: perf_score.
Initialize (𝜆1, 𝜆2, 𝜆3, 𝜆4), learning rate 𝜂, avg_exec_us←
0,avg_bitmap_size← 0
for each run of new test case do
Fuzzing and get q->exec_us, q->bitmap_size, q-
>handicap, q->depth
Update avg_exec_us,avg_bitmap_size
𝑠0 ← (avg_exec_us, avg_bitmap_size)
𝑠𝑞 ← (𝜆1 ∗ q− > exec_us, 𝜆2 ∗ q− > bitmap_size, 𝜆3 ∗
q− > handicap, 𝜆4 ∗ q− > depth)
Set reward 𝑅 ← 𝑐

if afl->unique_crashes and afl->unique_hangs update
then
𝑅 ← 𝑎

end if
if afl->unique_crashes or afl->unique_hangsupdates
then
𝑅 ← 𝑏

end if
end for
𝜆 ← 𝜆 + 𝜂∇𝜆 𝐽 (𝜆) // Update policy network.
perf_score← 100 ∗ | |𝑠𝑞 | |2| |𝑠0 | |2
Return: perf_score

4 EVALUAION
To evaluate the improvement by multi-level coverage tree
structure and reinforcement learning algorithm, we have
ported our RLSGD models and manual tuning versions to
run on MacBook Pro with Apple M1 Pro chip and 32GB
memory. Due to that we did not have much computation
resource such as powerful server, we could not contiguously
test our work on large scale benchmarks which may take
several days to get the results. To address this issue, we
developed a light weight benchmark which can quickly get
result in a short time, and we also fixed the run time for
each experiment at 15 minutes. At last, we used our own
benchmark to evaluate some critical performance metrics of
each experiment group.

4.1 Benchmark
To conduct an evaluationwith limited computation resources,
we have the following requirements for our benchmark:

• It should be lightweight. This is the most critical con-
sideration, because we need to get result quickly with
limited computation resource.

• It should generates many branches during runtime. To
evaluate our work on improving fuzzing coverage, we
need many branches to estimate the coverage.
• It should has some hard to find bugs. We have to put
some intentional bugs at some branches which won’t
be easy to reach, and such difficulty will distinguish
different experiment groups.

Considering all of the requirements, we decided to im-
plement a simple JSON parser as a benchmark. Without
any optimization, a simple JSON parser is pretty easy to
implement and it is also lightweight, most test cases can be
accomplished within a few seconds.

Since the JSON parser uses tokens to parse a JSON string,
it uses a state machine to represent the state of each token.
A specific token will lead parsing to a specific state. For
example, if it reads a curly open("{"), it recognizes it as a start
of an object, then it will reach the object state, and starts to
parse it. Thus each token is actually a branch, then there will
be many branches generated during run time.
There are also many strict validations in the parsing, for

example, number format, boolean value format and so on.
So we can put our buggy code under these validations and
make it difficult to trigger.

4.1.1 Benchmark Structure. There are four source code files:
• JSONNode.h: Some type definitions. No bugs.
• JSONParser.h: The main logic of parsing, e.g., parsing
object, parsing list and so on. Two crash bugs in the
code.
• Tokenizer.h: The utility function to read token from
input file. One hang bug in the code.
• main.cpp: The entry point of the program, read input
file and call the parser. No bugs.

4.1.2 Buggy Code. There are three bugs in our benchmark,
two of them are crash bugs and one is a hang bug. The
crash bugs are in JSONParser.h and the hang bug is in
Tokenizer.h. The buggy code is shown below:

Listing 2: Crash bug in ParseString().
std::shared_ptr<JSON::JSONNode> ParseString() {
printf("Parsing␣String\n");
std::shared_ptr<JSON::JSONNode> node = std::

↩→ make_shared<JSON::JSONNode>();
Token token = tokenizer_.GetToken();
std::string *sValue = new std::string(token.

↩→ value);
/****** BEGIN vulnerable code ******/
// if string is empty, the node will be

↩→ deleted, but it mistakely references
↩→ the

// nullptr

Towards Hybrid Fuzzing with Multi-level Coverage Tree and Reinforcement Learning in Greybox Fuzzing ECE 1776, December 2022, Toronto, ON, CA

// CRASH
if (sValue->empty()) {
delete sValue;
sValue = NULL;
node = NULL;

}
node->setString(sValue);
/****** END vulnerable code ******/
return node;

}

Listing 3: Crash bug in ParseNumber().
std::shared_ptr<JSON::JSONNode> ParseNumber() {
printf("Parsing␣Number\n");
std::shared_ptr<JSON::JSONNode> node = std::

↩→ make_shared<JSON::JSONNode>();
Token next_token = tokenizer_.GetToken();
std::string value = next_token.value;
/****** BEGIN vulnerable code ******/
// it does not check the float value, so that

↩→ if this cannot be converted to
// float(it starts with more than one '-'), it

↩→ will delete this node, but it
// mistakenly try to set the value to 0
// CRASH
float fValue = 0.0;
try {
fValue = std::stof(value);

} catch (const std::invalid_argument &e) {
node = NULL;

}
node->setNumber(fValue);
/****** END vulnerable code ******/
return node;

}

Listing 4: Hang bug in GetToken().
auto GetToken() {
...
if (c == '"') {
token.type = TokenType::kString;
token.value = "";
file.get(c);
/****** BEGIN vulnerable code ******/
// it does not check if reach the end of

↩→ file, this will cause a dead loop
// HANG
while (c != '"') {
token.value += c;
file.get(c);

}

/****** END vulnerable code ******/
}
...

}

For two crash bugs 2 and 3, both two are caused by access
to null portioners and memory corruption. Specifically, 2 is
triggered when the string value is empty, in other words,
when the string is two consecutive double quotationmarks(""),
it will be triggered. 3 is triggered when the number value is
not a valid negative number, for example, when the number
value is "–1.0", it will be triggered.

For the hang bug 4, it is caused by a dead loop. Specifically,
when the string value is not closed by a double quotation
mark, it will cause a dead loop. Because the code does not
check if it reaches the end of a file, when it is out of the end
of a file, the condition of the while loop will always be true,
then it will cause a dead loop.

These buggy code will cause some crashes and hangs and
we will let fuzzers of different experiment groups find them.

4.2 Experiment
4.2.1 Set Up. We have six experimental groups:

• AFL++: The original AFL++.
• Manual tuning 1: We manually tuned the param-
eters of AFL++’s score policy, intentionally make it
more aggressivewhen finding crashes. (𝜆1, 𝜆2, 𝜆3, 𝜆4) =
(1, 1, 1, 1).
• Manual tuning 2: Similar to the previous one, but
make finding hangs more aggressive. (𝜆1, 𝜆2, 𝜆3, 𝜆4) =
(2, 1, 1, 2).
• RLSGD211: Both crash and hang will be rewarded in
the model. The parameters of AFL++’s score policy are
tuned by the model. (𝑎, 𝑏, 𝑐) = (2, 1, 1).
• RLSGD210: Either crash or hang will be rewarded in
the model. (𝑎, 𝑏, 𝑐) = (2, 1, 0)
• RLSGD110: Neither crash nor hang will be rewarded
in the model. (𝑎, 𝑏, 𝑐) = (1, 1, 0)

Note that in manual tuning versions, the parameters of
AFL++’s score policy are fixed during run time, while in
RLSGD versions, the parameters are tuned by the model and
can be changed after each fuzzing iteration.

We ran each experiment group to fuzz our own lightweight
benchmark for 15 minutes on MacBook Pro with Apple M1
Pro chip and 32GB memory, evaluating the performance in
terms of the following metrics:

• Unique crashes: The number of unique crashes.
• Unique hangs: The number of unique hangs.
• Total paths: The number of total paths covered in run
time.

ECE 1776, December 2022, Toronto, ON, CA Dixi Yao, Kai Shen, and Xiaochong Wei

0 100 200 300 400 500 600 700 800 900
Time (seconds)

5

10

15

20

25

30

35

N
um

be
r o

f U
ni

qu
e

Cr
as

he
s

afl ++
mt1
mt2
RLSGD211
RLSGD210
RLSGD110

(a) 15 minutes.

0 25 50 75 100 125 150 175
Time (seconds)

5

10

15

20

25

30

N
um

be
r o

f U
ni

qu
e

Cr
as

he
s

afl ++
mt1
mt2
RLSGD211
RLSGD210
RLSGD110

(b) First 3 minutes.

Figure 4: The number of unique crashes found in 15
minutes.

4.2.2 Results. We collected fuzzing states of run time and
generated some graphs for the metrics mentioned above.

For unique crashes: From Figure 4a, we can see that RLSGD210
is the winner of finding unique crashes, since it finds out the
most crashes. From Figure 4b, we can see that RLSGD210
grows quickly at beginning, especially in first 25 seconds,
it grows fastest. This indicates that RLSGD210 finds most
crashes and it can also reach saturation more quickly.

For unique hangs: From Figure 5, we can see that manual
tunning version 2 (mt2) finds out the most hangs while the
winner of finding crashes RLSGD210 finds out the least hangs.
The reason why mt2 wins we attribute to our tunning for
finding hangs. The reason why RLSGD210 performs worst
we attribute to our model’s trade off between finding crashes
and hangs may be too aggressive.

0 100 200 300 400 500 600 700 800 900
Time (seconds)

0

2

4

6

8

10

12

14

N
um

be
r o

f H
an

gs

afl ++
mt1
mt2
RLSGD211
RLSGD210
RLSGD110

Figure 5: The number of unique hangs found in 15
minutes.

0 100 200 300 400 500 600 700 800 900
Time (seconds)

200

400

600

800
To

ta
l P

at
h

N
um

be
r

afl ++
mt1
mt2
RLSGD211
RLSGD210
RLSGD110

Figure 6: The number of total paths found in 15 min-
utes.

Fuzzer Crash Hang Total path
AFL++ 32 10 819

Manual tuning 1 32 5 890
Manual tuning 2 32 14 803

RLSGD211 25 8 820
RLSGD210 34 5 951
RLSGD110 29 6 797

Table 1: Results summary.

For total paths: From Figure 6, we can see that RLSGD210
has an overall better coverage than others.

Towards Hybrid Fuzzing with Multi-level Coverage Tree and Reinforcement Learning in Greybox Fuzzing ECE 1776, December 2022, Toronto, ON, CA

To sum up, the final results of the number of unique
crashes and hangs, and the number of total paths are shown
in Table 1.

4.3 Experiment Conclusion
The RLSGD210 is the winner of coverage and finding crashes,
but it is not good at finding hangs for now, we can further
tune the model to get better overall performance. Manual
tuning 2 seems to have a more balanced performance, but
its parameters are hardcore and fixed during run time, as a
result we do not think it has any more optimization space.
Both manual tuning 2 and RLSGD210 have obvious im-

provement compared to original AFL++. Although manual
tuning 2 has 1.95% creep of coverage, it has 40% increase of
finding hangs. Although RLSGD210 has 50.00% creep of find-
ing hangs, it has 6.25% increase of finding crashes and 16.12%
increase of coverage, it also seeks crashes more quickly than
AFL++ in early stage. Thus, multi-level coverage tree struc-
ture has been improved by AFL++.

We believe that AFL++’s hardcode score policy lacks flexi-
bility and sometimes may not be intelligent enough to en-
large coverage or dig deeper. Thus, using reinforcement
learning algorithms to dynamically adapt score parameters
is promising. RLSGD210 has proved that it can improve cov-
erage and find crashes. Next step, we will try to eliminate
the defects of finding hangs, try to use ADAM optimizer or
other algorithm like PPO to make further optimization.

5 LESSONS LEARNED
Our course project progress is demonstrated in Figure 7. We
firstly tried to come upwith some ideas from reviewing previ-
ous high-quality papers. For instance, one of them is CollAFL
[7], which we have carefully reviewed and analyzed during
our lectures. On the basis of our paper reading and discus-
sion, we agreed that the structure of multi-level coverage
tree [26] can address the code coverage issues effectively and
efficiently, so we further read some related papers in order
to try to validate its necceciety and propose a further solu-
tion. However, we found that AFL++’s score calculation was
hardcode and parameters seemed all magic numbers. Thus
we tried to take advantage of state-of-the-art reinforcement
learning approaches with multi-level coverage to dynami-
cally adapt these score parameters according to the reward
of crash and hang. Finally, due to the limitation of computa-
tion resource, we developed our own lightweight benchmark
Jesting-SON to evaluate work.
From the midterm evaluation, we figured out the clear

path of how to produce our final projects. As a result, after
midterm evaluation, we re-examined our proposal and our
progress by midterm and made a plan of what to do next
step. Then, in the rest of time, we addressed the issues we

Review papers Coverage-guided
fuzzing

Multi-level coverageReinforcement
learning

Hybrid
Jesting-SON
lightweight
benchmark

Evaluation

Figure 7: Our course project flow chart.

peoposed and made modifications on the evaluation part due
to our limited resources. It is important to do some changes
based on the actual requirements and we still can meet our
initial expectation of our project.

6 CONCLUSION
In this paper, we proposed a two-fold hybrid solution to
tackle the unresolved challenges posed in the area of coverage-
guided greybox fuzzing. We leverage a multi-level coverage
tree to take advantage of various coverage metrics with ef-
ficiency, which significantly makes the new code coverage
metrics more informative. Meanwhile, state-of-the-art rein-
forcement learning algorithms are being leveraged for in-
telligently scoring the seeds. Hence, we achieved a better
trade-off between seed exploration and seed exploitation,
which further improve the performance of fuzzers. Evalua-
tions of our work are conducted on a lightweight JSON parser
benchmark, which is implemented for experiments under
low computation budgets. More importantly, it reveals the
superiority of our approach on the basis of unique crashes,
unique hangs, and total covered paths.

ECE 1776, December 2022, Toronto, ON, CA Dixi Yao, Kai Shen, and Xiaochong Wei

7 ACKNOWLEDGMENTS
We would like to thank Prof. David Lie, because he delivers
perfect lectures in terms of the state-of-art fuzzing technol-
ogy. By doing course project, we have learned a lot during
coding, brain storm, paper reading and any other things we
did to complete this course project. As M.A.Sc. Students, this
is a good practice experience.

REFERENCES
[1] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik

Roychoudhury. 2017. Directed greybox fuzzing. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2329–2344.

[2] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016.
Coverage-based greybox fuzzing as markov chain. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 1032–1043.

[3] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unas-
sisted and automatic generation of high-coverage tests for complex
systems programs.. In OSDI, Vol. 8. 209–224.

[4] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie,
XiuhengWu, and Yang Liu. 2018. Hawkeye: Towards a desired directed
grey-box fuzzer. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2095–2108.

[5] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011.
S2E: A platform for in-vivo multi-path analysis of software systems.
Acm Sigplan Notices 46, 3 (2011), 265–278.

[6] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz.
2014. KameleonFuzz: evolutionary fuzzing for black-box XSS detec-
tion. In Proceedings of the 4th ACM conference on Data and application
security and privacy. 37–48.

[7] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. 2018. Collafl: Path sensitive fuzzing. In 2018
IEEE Symposium on Security and Privacy (SP). IEEE, 679–696.

[8] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. 2008. Grammar-
based whitebox fuzzing. In Proceedings of the 29th ACM SIGPLAN
conference on programming language design and implementation. 206–
215.

[9] Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE:
whitebox fuzzing for security testing. Commun. ACM 55, 3 (2012),
40–44.

[10] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2018. Grammari-
nator: a grammar-based open source fuzzer. In Proceedings of the 9th
ACM SIGSOFT international workshop on automating TEST case design,
selection, and evaluation. 45–48.

[11] Rody Kersten, Kasper Luckow, and Corina S Păsăreanu. 2017. POSTER:
AFL-based Fuzzing for Java with Kelinci. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
2511–2513.

[12] Diederik P Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

[13] Jun Li, Bodong Zhao, and Chao Zhang. 2018. Fuzzing: a survey. Cy-
bersecurity 1, 1 (2018), 1–13.

[14] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian
Zhang. 2018. Fuzzing: State of the art. IEEE Transactions on Reliability
67, 3 (2018), 1199–1218.

[15] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee,
Yu Song, and Raheem Beyah. 2019. {MOPT}: Optimized mutation
scheduling for fuzzers. In 28th USENIX Security Symposium (USENIX
Security 19). 1949–1966.

[16] Stefan Nagy and Matthew Hicks. 2019. Full-speed fuzzing: Reduc-
ing fuzzing overhead through coverage-guided tracing. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 787–802.

[17] Augustus Odena, Catherine Olsson, David Andersen, and Ian Good-
fellow. 2019. Tensorfuzz: Debugging neural networks with coverage-
guided fuzzing. In International Conference onMachine Learning. PMLR,
4901–4911.

[18] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. 2020. {ParmeSan}: Sanitizer-guided Greybox Fuzzing. In 29th
USENIX Security Symposium (USENIX Security 20). 2289–2306.

[19] Van-Thuan Pham, Marcel Böhme, Andrew E Santosa, Alexandru Răz-
van Căciulescu, and Abhik Roychoudhury. 2019. Smart greybox
fuzzing. IEEE Transactions on Software Engineering 47, 9 (2019), 1980–
1997.

[20] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. 2017. VUzzer: Application-aware Evolu-
tionary Fuzzing.. In NDSS, Vol. 17. 1–14.

[21] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 (2017).

[22] Kosta Serebryany. 2016. Continuous fuzzing with libfuzzer and ad-
dresssanitizer. In 2016 IEEE Cybersecurity Development (SecDev). IEEE,
157–157.

[23] Kostya Serebryany. 2017. {OSS-Fuzz}-Google’s continuous fuzzing
service for open source software. (2017).

[24] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. 2016. Driller: Augmenting fuzzing
through selective symbolic execution.. In NDSS, Vol. 16. 1–16.

[25] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion:
Grammar-aware greybox fuzzing. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 724–735.

[26] Jinghan Wang, Chengyu Song, and Heng Yin. 2021. Reinforce-
ment learning-based hierarchical seed scheduling for greybox fuzzing.
(2021).

[27] Christopher JCHWatkins and Peter Dayan. 1992. Q-learning. Machine
learning 8, 3 (1992), 279–292.

[28] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley.
2013. Scheduling black-box mutational fuzzing. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security.
511–522.

[29] Michal Zalewski. 2017. American fuzzy lop.
[30] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang,

and Kai Chen. 2020. {FuzzGuard}: Filtering out Unreachable Inputs
in Directed Grey-box Fuzzing through Deep Learning. In 29th USENIX
Security Symposium (USENIX Security 20). 2255–2269.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Fuzzing
	2.2 Coverage-guided Fuzzing
	2.3 Greybox Fuzzing
	2.4 Coverage-guided Greybox Fuzzing

	3 System Design
	3.1 Overview
	3.2 Multi-level Coverage Tree
	3.3 Seed Score Policy

	4 Evaluaion
	4.1 Benchmark
	4.2 Experiment
	4.3 Experiment Conclusion

	5 Lessons Learned
	6 Conclusion
	7 Acknowledgments
	References

