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Abstract—We focus on the privacy-preserving problem in split
learning in this work. In vanilla split learning, a neural network is
split to different devices to be trained, risking leaking the private
training data in the process. We novelly propose a patch shuffling
scheme on transformers to preserve training data privacy, yet
without degrading overall model performance. Formal privacy
guarantees are provided and we further introduce the batch
shuffling and the spectral shuffling schemes to enhance the
guarantee. We show through experiments that our methods suc-
cessfully defend the black-box, white-box, and adaptive attacks
in split learning, with superior performance over baselines, and
are efficient to deploy with negligible overhead compared to the
vanilla split learning.

Index Terms—Data privacy, deep learning, transformer, split
learning, shuffling

I. INTRODUCTION

Recent years have witnessed a great surge in machine
learning applications such as face identification [1], recom-
mendation systems [2], and natural language processing [3].
Meanwhile, a new computational paradigm is arising that the
data is kept local and the machine learning model runs across
different hardwares [4]–[7]. It allows users to take advantage
of computational power while preserving the privacy of their
local data. Split learning [5] recently emerges as such a
framework to support model training across the edge and
the cloud. The edge takes local inputs, transforms them into
intermediate features, or smashed data, and sends them to the
cloud. The cloud trains over features without being aware of
the original inputs.

However, the vanilla split learning recently raised wide
concern of privacy-leaking. It has been shown that an ad-
versary could infer the private input from the intermediate
features [8], [9]. But the problem largely remains unresolved.
Most of the existing works have been devoted to privacy-
preserving inference [10], [11] rather than split learning, as
inference only requires the features transmitted in the one-time
forward propagation is privacy-preserving, while it is much
more difficult to protect the training data in multiple rounds
of forward and backward propagations. Hence, privacy should
be guaranteed from the start of training to its end, not only on
a fixed model. Additionally, in split learning, the label data is
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often privately owned by the cloud, posing greater challenges
to privacy-preserving split learning. For an instance, while the
facial image of a user is private to the edge device, its identity
belongs to a proprietary enterprise database which is restricted
from being revealed.

Particularly, addressing the privacy issue in split learning
requires seeking a sweet spot in the tradeoffs in the learning
task utility, data privacy, and computational efficiency. It
means that the privacy-preserving approach has to be practical
to run on a piece of thin edge devices. Cryptographic tools are
not a fit for this scenario as it typically has a high demand
on the computational and communication costs [12], which is
unbearable on a moderately deep neural network. Differential
privacy and other transform-based approaches applied to the
training inputs [13], [14], or intermediate features [10], [11],
usually sacrifice significant accuracy performance to achieve
the privacy guarantee. It is not ideal in cases where accuracy
loss is undesirable.

In this work, we propose a practical privacy-preserving split
learning framework based on transformer models. Transformer
is a cutting-edge neural network structure with superior per-
formance [2], [3], [15], [16]. We exploit its robustness against
distortions such as occlusion, shuffling, noise, etc. [17], [18],
to derive a patch shuffling scheme to protect the training
data privacy. The idea is to remove the position embedding
layer from the transformer and randomly shuffle the patch
tokens to prevent input reconstruction. As the position of each
patch is random, it is almost impossible for the adversary to
recover the inputs. But model accuracy is rarely affected due
to the robustness property. The overhead at the edge is rather
lightweight, as a user only needs to shuffle its data to be sent
without getting involved in the backward loop.

We not only provide the privacy guarantee based on random
shuffling, but also propose two more methods, batch shuffling,
and spectral shuffling, to secure the training data. In patch
shuffling, one may argue that the correlation between adjacent
patches degrades its privacy guarantee. We show through
both analysis and experiments that, such correlations could
be brought down to almost zero if we expand the range
of possible permutations, or transform features into another
domain. For the former, batch shuffling introduces shuffling,
occlusion, and mixture to a batch of, rather than a single
instance of the data, significantly enlarging the search space
for an adversary to obtain the correct permutation order. For
the latter, features are transformed into the spectral domain



before being shuffled, which destroys the correlation in the
time domain. Interestingly, for the spectral shuffling, the
transformer learns in the frequency domain but achieves an
equivalent performance to that in the time domain. All three
methods proposed provide slightly different tradeoffs between
privacy and utility, but their performances are superior to
the state-of-the-art. The privacy-preserving training process
introduces negligible overhead to vanilla split learning.

Highlights of our contributions are as follows. We are
among the first to propose patch shuffling as a privacy-
preserving approach in split learning. A formal privacy guaran-
tee is provided and is further enhanced by batch shuffling and
spectral shuffling. Experiments on a variety of datasets and
tasks have shown the superior performance of our schemes
regarding accuracy, privacy, and efficiency. The code is now
available on www.github.com/dixiyao/PatchShuffling.

II. BACKGROUND AND RELATED WORK

A. Transformer Properties

Inspired by the great success of Transformers in natural lan-
guage processing (NLP) [3], researchers adopt similar model
structures in various fields including vision, recommendation
system [2], electrocardiogram [19], etc. and have achieved
superior performance over conventional neural networks. For
example, a Vision Transformer (ViT) [15] model treats the
linear projection of cropped, fixed-size patches of an image
as patch tokens, and takes other task tokens, such as class
tokens for classification to complete the specified learning task.
The patch order in the original image is used for position
embedding. Tokens-To-Token Vision Transformer (T2T) [16]
improves over ViT by changing the patch embedding layer
into a tokens-to-token module, which encodes the important
local structure of each token.

An intriguing property of a transformer is that its basic
operations — multilayer perceptron (MLP) and self-attention
— are permutation invariant, suggesting the possibility of
altering the order of the patch sequence without affecting the
computation of class tokens. Moreover, transformers exhibit
desirable properties for building privacy-preserving networks.
Naseer et al. [17] showed that ViT is robust against differ-
ent levels of corruption over images. Even if the position
embedding, indicating the patch location information [20],
is removed, and patches are randomly shuffled, ViT merely
loses 4% accuracy on ImageNet [21]. Apart from that, even
if half of the patches are occluded, ViT loses 4% accuracy,
compared to over 20% accuracy decline when 5% of the
patches are masked in the conventional neural networks. He et
al. [18] exploited such a property to propose a self-learning
framework called Masked AutoEncoder (MAE), by which
masking 15% of the patches would still maintain the state-
of-the-art accuracy. We build our privacy-preserving scheme
based on these transformer properties.

B. Split Learning

As neural networks are growing larger and larger, a trend
is to split them apart into submodules to run on different
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Fig. 1. Different learning frameworks: edge computing, edge-cloud inference,
and split learning. X are inputs; Y are labels, F and F ′ denote (partial)
models, and Ŷ represents the prediction. Blue and red lines stand for forward
and backward propagation, respectively.

hardware. Hao et al. [4] proposed to deploy the first layer of a
model on the edge device, and the rest on the cloud, keeping
users’ private data local while utilizing the cloud resources
to complete learning tasks. However, their framework is only
used for inference. As for training, split learning (SL) [5],
[6] splits a neural network into multiple submodules, and
jointly trains these submodules on different devices. A critical
part is communication among different parties, which involves
sending back and forth intermediate features, smashed data,
error gradients, etc. As shown in the example of Fig. 1, a
model is split into two parts residing at the edge and the cloud.
Different from the edge-cloud inference, the edge sends the
feature to the cloud in the forward loop, whereas it retrieves
the error gradient from the cloud in the backward loop.

Nevertheless, an unprotected split learning framework risks
users’ data privacy. An inversion attack can be launched to
infer private information from smashed data [11]. It is also
possible to fit the private data by optimization over the known
model parameters [8]. Besides, label inference attack [22]
presents a threat to the party who holds the labels, which could
also be private. Hence, it is our goal to address the threat to
private training data in split learning.

C. Privacy-Perserving Split Learning

Many efforts have been made to preserve data privacy in
split learning, where the privacy of both the inputs and labels
should not be leaked to any other party. However, most existing
methods aim at the inference stage, and few can be applied to
training. Traditional methods include cryptographic ones such
as secure multi-party computation and homomorphic encryp-
tion. But these methods typically involve significant overhead
in encryption, decryption, computation, and communication.
Lee et al. [12] implemented a polynomial approximation over
non-linear functions and encrypt the training process with fully
homomorphic encryption. It demands 10 to 1000 times more
computation power compared to the unprotected split learning,
which is unacceptable to edge devices. The approximation
computation also results in accuracy losses. Hence, a viable
approach would leverage properties of neural networks; for
example, Li et al. [23] adversarially learned the client submod-
ule to produce intermediate features not containing any private
input information; but sufficient to complete the task. However,
the method only works when the learning converges and thus
suffers potential leakage at the early stage of training. Dong et
al. [13] inserted Gaussian noise to the smashed data following
the convention of differential privacy. Ryoo et al. [14] adjusted



the image resolution to find the best tradeoff between utility
and privacy. The latter two works have to sacrifice considerable
accuracy to meet the privacy requirement. To the best of our
knowledge, no method up to now could provide satisfying
performance in accuracy, privacy, and computation efficiency
in split learning.

III. FORMULATION AND THREAT MODEL

We present the problem formulation and threat model in
this section.

A. Problem Formulation
In split learning, the edge client owns X = {x1, · · · , xn} ⊂

Rd (n samples of d-dimensional features), which is a part of
the private datasetD = {X,Y }, and the cloud server possesses
k-class private labels Y = {y1, · · · , yn}, yi ∈ {1, · · · , k}, i ∈
{1, · · · , n}. Typically, the edge client is resource-restricted,
while the server is powerful. The output of the edge is
called smashed data or features in this work. We also cover
cases where multiple edge clients collaboratively compute the
smashed data to feed to the server model. but it is a trivial
extension to the one-client-one-server case, and thus we focus
on the latter.

In the split learning task, we define the edge model as F
and the cloud model as F ′. The goal of split learning is to
minimize the accuracy loss as

min
F,F ′

Ltask(F
′(F (X)), Y ). (1)

If we denote the privacy protection method as M , we can
write the task objective as

min
F,F ′,M

Ltask(F
′(F (M(X))), Y ). (2)

At the same time, the model F and the mechanism M should
be chosen to maximize the attacker loss Lattack, referring to
the loss of reconstructing X from the smashed data F (M(X)).
We will thoroughly discuss the Lattack in the following
section.

B. Threat Model
We assume an honest-but-curious cloud server who com-

pletes the learning task as required but is curious about the
edge client’s private data. Depending on the access level of
the server, we divide the attack into the following categories,
which should cover most of the possible attacks.

Black-box attacks. The attacker merely accesses the
smashed data [11]. It trains an inversion model G to infer
inputs from the smashed data over a public dataset Xpub. The
input of G is the smashed data; the output is the reconstructed
input X̃pub, and the goal is to minimize the mean square error
(MSE) between X̃pub and Xpub:

min
G

Lattack (G(F (M(Xpub))), Xpub) . (3)

At the end of the training, the smashed data of X is fed into
G to invert X .

White-box attacks directly perform gradient descent over
its guess X̃ on the known model F to minimize the recon-
struction loss between F (M(X̃)) and F (M(X)) [8], [24].
The optimization objective is as follows:

min
X̃

Lattack

(
F (M(X̃)), F (M(X))

)
. (4)
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Fig. 2. The structure of our privacy-preserving split learning framework.
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(c) Output of Batch
Shuffling

Fig. 3. The illustration of different patch privacy-preserving methods: each
image is assumed to be cropped into 9 patches; index represents the correct
position of each image in its original input; different colors represents different
original inputs.

Lattack can be an MSE for an instance.
Adaptive attacks. In the training process, the attacker gains

much more as it could access the smashed data from multiple
rounds [25]. The model is similar to that of a black-box attack
but takes multiple iterations of the smashed data. Letting the
model be trained for e iterations, the attacker could recover X
with the smashed data from F 1(M(X)), · · · , F e(M(X)) by

min
G

Lattack
(
G(F 1(M(X)), · · · , F e(M(X))), X

)
. (5)

The attacks are typical in the split learning scenario. We hereby
design our privacy-preserving learning framework to defend
against these attacks.

IV. METHODOLOGY

Our privacy-preserving split learning framework over trans-
formers is shown in Fig. 2. On the edge, the input is embedded
into patches before the linear projection, and we call them
patch embeddings. Different from conventional transformers,
position embedding is removed so as to eliminate the position
information from the learning task, enabling patch shuffling
without performance degradation. We apply a mechanism M
over the patch embeddings. The output of M is the protected
smashed data transmitted to the cloud. As there is a very small
proportion of model parameters residing at the edge, the part
of parameters can be fixed. The cloud takes the smashed data
to complete the training. We also instantiated the attacks in
Sec. III to our framework in Fig. 2. The attacks target at
F (M(X)) to reconstruct X . In the following, we will give the
details of our mechanism M , as well as its privacy guarantee.



A. Definition of Privacy

The goal of M is to constrain the likelihood that the original
input can be inferred from the given smashed data. The key
insight is to randomly shuffle the patches to maximize the
uncertainty of the attacker in input reconstruction. We list
patches of an image or a batch of images in a sequence
represented by permutation σ. If we permute the red patches
in Fig. 3(a) to the red ones in Fig. 3(b), the permutation σ
of the latter is (1, 4, 8, 9, 7, 2, 3, 5, 6). That is, patch 2 is
now in the place of patch 4 in (b). Let the collection of σ be
S. To quantize the uncertainty, we first give the definition of
Neighboring Permutations, which defines how ‘similar’ a pair
of permutations are.

Definition 1. (Neighbouring Permutations) We divide a single
instance into N patches, and the permutations of these N
patches constitute S. Any two permutation σ, σ′ ∈ S are
defined to be neighboring.

Now, we formally define σ-privacy as follows.

Definition 2. (σ-privacy) Given private dataset X and a set
of permutations S, a randomized mechanism A : f(X) 7→ V
(V is the output space of f ) is σ-private if for all x ∈ X ,
neighbouring permutations σ and σ′ and any z ∈ V , we have

Pr[A(σ(f(x))) = z] = Pr[A(σ′(f(x))) = z]. (6)

σ-privacy states that mechanism A is agnostic of the order
of patches. And thus an adversary cannot distinguish the
correct permutation from the wrong ones (its neighboring
permutations) given the smashed data z. Hence, the adversary
is uncertain about the original patch order based on the
smashed data. This property is similar to dσ-privacy [26],
but we focus on the patch sequence while they emphasize
the relative ordering of data. In dσ-privacy, the privacy level
is determined by sensitivity and the parameter α. As we
sample permutations from a uniform distribution instead of
the mallows model, the parameter α = 0 in dσ-privacy. That
is, neighboring permutations have the same probability of
occurring given the output.

B. Patch Shuffling

In patch shuffling, we remove the position embedding
from the model without affecting the accuracy too much, yet
preventing an adversary from recovering the original input.
We randomly shuffle the patches in one instance. The patch
embedding is defined as f : Rd → RN×D, i.e., each f(x)
has N patches, and the dimension of each patch token is D.
We randomly sample σ from S and shuffle f(x) in the unit
of patch tokens. An instance of patch shuffling is given in
Fig. 3(b) where each patch is shuffled within the image. The
detail of patch shuffling is shown in Alg. 1. In practice, we
add a transformer block following the shuffled patches and
transmit the output of the transformer block to the cloud to
further enhance privacy performance. The model weights of
the additional transformer block are fixed prior.

Algorithm 1: Patch (Spectral) Shuffling
Input: X = {x1, · · · , xn|∀i, xi ∈ Rd}
Output: M(X)

1 Initialize the patch embedding layer f : Rd → RN×D , Batch
size B, permutation set S of all permutations of sequence
1 : N , M(X) = ∅, transformer block t;

2 for each xi in X do
3 h = f(xi);
4 if Spectral Shuffling then
5 h = FFT (h) // FFT is a Fast Fourier Transform;
6 end
7 Sample σ from S with a uniform distribution;
8 h = σ(h);
9 if Patch Shuffling then

10 h = t(h);
11 end
12 M(X) =M(X) ∪ {h};
13 end

In this case, as we sample permutations following a uniform
distribution, each permutation including the original order
occurs with the same probability of 1/N ! (N=196) to produce
z. Hence, each pair of neighboring permutations involving the
original sequence would occur with the same probability. The
adversary could only random guess which permutation is the
correct one from all permutations, and thus fails to reconstruct
the original instance. Therefore, we have the following propo-
sition:

Proposition 1. Patch shuffling (Alg. 1) is σ-private with
uniformly random permutation on N patches of the instance.

For example, given a permutation σ from the original
instance as in Fig. 3(a), and another arbitrary permutation,
σ′, the two have the same probability to produce the sequence
in Fig. 3(b) under Alg. 1. An adversary is thus unable to tell
the correct instance from the wrong one.

Strictly speaking, even with the uniform sampling in Alg. 1,
each sequence has a slightly different probability to occur
given the smashed data. This may attribute to the correlation
in patches of the same instance, i.e., patches sharing the same
edges are correlated, and therefore the position of every single
patch is not independent. Hence, in the following sections, we
derive two approaches to mitigate such a correlation.

C. Batch Shuffling

We further propose batch shuffling to enhance the difficulty
of the adversary in inverting the inputs. Three basic operations
are defined: shuffling, occlusion, and mixture. We first select
a batch of data X = {x1, · · · , xB} and perform patch embed-
ding. The hyperparameter k ∈ (0, 1) is selected, meaning that
for each instance, k of the patches stay where they are, and
the rest are shifted to other instances in the same batch. For
example, in Fig. 3(c), we keep patches 1, 2, 5, 6, and 7 in the
red instance while randomly shifting the rest to other instances:
patches 3, and 9 are exchanged with patches in the green
instance, and patch 4, 8 are shuffled to the blue one. Occlusion
is realized by removing 1−k patches from the original place,



Algorithm 2: Batch Shuffling
Input: X = {x1, · · · , xn|∀i, xi ∈ Rd}
Output: M(X)

1 Initialize the patch embedding layer f : Rd → RN×D , Batch
size B, hyperparameter k, N ′=N − bk ·Nc, permutation
set S1 of all permutations of sequence 1 : N , permutation
set S2 of all permutations of sequence 1 : B ·N ′,
M(X) = ∅, transformer block t;

2 Split X into d n
B
e batches: X1, · · · , Xd n

B
e;

3 for i = 1 : d n
B
e do

4 Xi = {x1, · · · , xB};
5 f(Xi) = {f(x1), · · · , f(xB)};
6 Sample {σ1, · · · , σB} from S1 and perform patch

shuffling to get {σ1(f(x1)), · · · , σB(f(xB))};
7 Generate the patch sequence to be kept in each instance

(parameterized by k): {u1, · · · , uB}, each of which is
a sequence of length bk ·Nc;

8 Concatenate the rest patches into p;
9 Sample δ from S2 to get δ(p);

10 Split δ(p) into sequences of the same length (N ′ ·D)
{v1, · · · , vB};

11 for j=1 : B do
12 Concatenate uj and vj to obtain mj ;
13 M(xj) = t(mj);
14 end
15 M(X) =M(X) ∪M(Xi);
16 end

and mixture is realized by mixing up with patches from other
instances. Finally, a patch shuffling is performed instance-wise
to further shuffle the patches within the instance. The detailed
procedure of batch shuffling is shown as Alg. 2. A result of
the batch shuffling is shown in Fig. 3(c).

In batch shuffling, permutations are applied to a batch
instead of a single instance. Take Fig. 3(c) as an example, in
each instance, we choose k out of the total number of patches
to keep, and the rest patches are shuffled among different
instances. For the first step, the red instances of Fig. 3(a)
and Fig. 3(b) have an equivalent probability to keep patches
1, 7, 6, 2, and 5 within the same instance. In the second
step, the two instances (after the first step) have the same
probability of turning into the first instance in Fig. 3(c). Hence
the red instances of Fig. 3(a) and Fig. 3(b) are two neighboring
permutations, and they share the same likelihood of producing
the same smashed data. Therefore, we have

Proposition 2. Batch shuffling (Alg. 2) is σ-private with
permutations applied to N×B patches, where N is the number
of patches in an instance and B is the batch size.

It is obvious that the correlation between patches of the
same instance is weakened by the interpolation of other in-
stances. Moreover, there are much more potential permutations
than patch shuffling, which significantly increases the recon-
struction hardness of the attacker. Given z, if the adversary
has extremely strong computational power, it would have to
traverse all possible permutations, that totals((

N

bN · kc

)
· bN · kc!

)B
· (B ·N ′)! (7)

Original 
Input

Input on
Frequency 
Domain

Output of
Spectral
Shuffling

Fig. 4. The illustration of
Spectral Shuffling: trans-
form the image into fre-
quency domain, crop the
spectral image into 16 ×
16 patches, and shuffle
them.

Time Domain Frequency Domain

Fig. 5. Position embeddings of training ViT over
Cifar10 images in time domain and frequency
domain. Each color map in 14×14 grid represents
the cosine similarity of position embedding of
patch i and every other patches.

To seek those recovering the target instance. A total number
of ((

N

bN · kc

)
· bN · kc!

)B−1
· ((B − 1) ·N ′)! (8)

Permutations contain the correct target instance, which oc-
cupies a much smaller proportion than 1/N ! of the patch
shuffling.

D. Spectral Shuffling

We propose an alternative approach — spectral shuffling
— to further eliminate the latent position correlation among
patches. The procedure resembles patch shuffling and thus we
present it in Alg. 1. An illustrative example can be found in
Fig. 4. After the initial patch embedding, we turn all features
into the frequency domain through Fast Fourier Transform
(FFT). The transformed features are spectral representations
of the instance other than the pixel (in RGB) representation.
The spectral features are presented in the form of complex
values, in which we regard the real and imaginary parts as
individual channels and feed them into the following layers.
Now each complex-valued feature denotes a value at a dif-
ferent frequency. Shuffling is conducted to mix up values at
various frequencies.

Although the spectral images in Fig. 4 resemble an image in
pixels; the relation among different patches has little meaning.
This is because the patches in the spectral presentation are
not continuous in nature, i.e., values at different frequencies
are likely not correlated. To further verify the point, we draw
in Fig. 5 the cosine similarity of the position embeddings
of every pair of patches in the original time-domain and
the spectral domain, respectively. The darker color means
less correlation. It can be observed that patches in the time
domain are somewhat correlated, but the cosine similarity is
almost all zeros in the spectral domain. The observation further
supports that each shuffling sequence in the spectral domain is
equally likely. We hence inherit the privacy guarantee in patch
shuffling (Proposition 1. As a result, spectral shuffling is also
σ-private).

V. EVALUATION

A. Setup and implementation detail

1) Models and datasets: Our framework is built on
Pytorch and Torchvision, and a T2T [16] model serves as



the transformer backbone for image datasets. Our neural net-
work is trained on a model base pretrained on ImageNet [21].
The neural network structure is T2T Patch16 Depth24, where
each input image is cropped to a patch size of 16, fed into
a model consisting of 24 transformer blocks at the cloud.
Particularly for spectral shuffling, we use the patch embedding
layer in ViT [15] implemented by Pytorch image models
(timm 1, a collection of SOTA computer vision models and
pretrained weights.) Instead of tokens-to-token in T2T. For the
tabular dataset, we adopt Dual Importance-aware Factorization
Machines (DIFM) [27] with its default hyperparameters. The
part preceding the prediction layer is placed at the edge, as
shown in Fig. 8. All model weights on the edge are fixed prior.

We choose a facial image dataset CelebA [28], an object
image dataset Cifar10 [29], and a tabular dataset Criteo 2 in
the evaluation. CelebA contains 2,022,599 faces from 10,177
celebrities. A 40-attribute classification task is performed on
the dataset. Cifar10 consists of 60000 natural images in 10
different classes. Criteo is a click-through-rate dataset for
recommendation systems. It contains one month of ad click
logs with 100 million records, 13 numerical, and 26 categorical
features.

Our default hyperparameters are set as follows. The pre-
cision is 32-bit. For tasks on CelebA, LFW, and Cifar10,
we train the models with the SGD optimizer. The learning
rate (lr) of the final MLP classifier block and the transformer
blocks is set to 0.05 and 5× 10−4, respectively, and a cosine
scheduler is used with the minimal lr 2× 10−4 and 2× 10−6

correspondingly. The momentum is 0.9, and the weight decay
is 5 × 10−4. In implementing spectral shuffling, due to the
difference in the representation space between the frequency
domain and time domain, we use a learning rate of 0.1, and
0.001 for the final MLP classifier block and the transformer
blocks, respectively. Models are trained for 60 epochs with a
batch size of 50. In batch shuffling, k = 0.4 by default.

2) Baselines: For a fair comparison, we select a set of ex-
isting privacy-preserving methods applicable in split learning.
In these baselines, labels are kept in the cloud. Conventional
cryptographic approaches are not included as they require
exorbitant computational and communication costs, which is
infeasible to be applied at the edge in split learning. Hence
our baselines include:

SL: The unprotected split learning, implemented as [5],
without any protection for the smashed data.

Adv: The adversarial learning approach [23] trains the edge
model against a simulated attacker G′ to defend against the
inversion attack, alongside its primary learning task. Specifi-
cally, the approach maximizes the reconstruction loss of the
simulated attacker while minimizing the task loss:
min
F,F ′

max
G′

Ltask(F
′(F (X)), Y )−Lattack(G′(F (X)), X) (9)

However, the method is restricted by its high demand for the
edge resource in training the simulated attacker. Moreover, if
the real-world attacker is more powerful than the simulated

1https://github.com/rwightman/pytorch-image-models
2http://labs.criteo.com/downloads/download-terabyte-click-logs/

attacker, the defense would break. Last but not the least, Adv
does not guarantee training data privacy during the training
process; privacy is guaranteed only when Eq. (9) reaches a
saddle point.

Transform: The methods apply permutation or transforma-
tion over the smashed data to prevent inversion attacks. The
most prominent of this type is adding Gaussian noise [13]
to achieve differential privacy. Since differential privacy is
gauged in different ways in papers, we use the noise ∼
N (0, 4) as an example, denoted by GN. We also insert noise
following the instruction of differential privacy [13], which
yields ε ≈ 6.68 with a Gaussian noise standard deviation of
1.0. The method is called DP. Finally, Ryoo et al. propose
a transformation technique Blur [14] generating extremely
low-resolution images for preserving image privacy in neural
networks. In our experiments, the default setting is to decrease
the resolution to 1/14 of the original.

We implemented three methods: patch shuffling as Our PS,
batch shuffling as Our BS and spectral shuffling as Our PS+.
The number behind batch shuffling denotes k, e.g., Our BS 40
means batch shuffling with k = 0.4.

3) Metrics: We evaluated our methods against baselines
regarding utility, privacy, and efficiency.

Utility: We use accuracy (Acc) to evaluate the performance
of the classification task. In particular, for face attribute classi-
fication on CelebA [28], we also use the Matthews correlation
coefficient (MCC) due to the imbalanced label distribution:

MCC =
(TP · TN− FP · FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

(10)

TP, TN, FP and FN represent true positive, true negative, false
positive and false negative, respectively. The range of MCC
is [−1, 1] where 1, 0, -1 indicate the perfect, random, and the
worst predictions, respectively.

Privacy: To evaluate privacy, we mainly gauge the capabil-
ity of attacker in reconstructing the private inputs. For image
data, we evaluate the performance using the following metrics.
• MSE: The mean square error between the original inputs

and the reconstruction results.
• PSNR: Peak Signal to Noise Ratio [30], a common metric

to evaluate image quality.
• SSIM: Structural Similarity [30], a metric evaluating

the similarity between the original and the reconstructed
images.

• F-SIM: We feed the original and the reconstructed im-
ages into a deep neural network and compare the co-
sine similarity between the features. For human face
datasets CelebA and LFW, we use InceptionResNetV1
of FaceNet [1], pretrained on VggFace2 [31]. For Ci-
far10 [29], we use ResNet18 pretrained on ImageNet.
In both networks, the feature fed into the final linear
classifier is used.

• ID: For human face datasets, we also evaluate the iden-
tification success rate on InceptionResNetV1 [1]. The
identification network is trained on the entire dataset



(a) Input (b) SL (c) Adv (d) Blur (e) DP (f) GN (g) Our BS (h) Our PS+

Fig. 6. Examples of reconstructed images by the black-box attack against different defense methods on CelebA.

TABLE I
THE COMPARISON OF UTILITY AND PRIVACY ON DIFFERENT METHODS
UNDER THE BLACK-BOX ATTACK. ATTRIBUTE CLASSIFICATION TASK IS

PERFORMED ON CELEBA. ↑ DENOTES DESIRABLE DIRECTIONS, AND
ITALICS MEANS UNACCEPTABLE RESULTS.

Methods Utility Privacy
Acc ↑ MCC↑ MSE ↑ SSIM↓ PSNR ↓ F-SIM ↓ ID↓

SL 91.05 0.727 0.014 0.670 18.64 0.925 0.909
Adv 90.36 0.705 0.014 0.669 18.69 0.925 0.909
Blur 89.58 0.678 0.02 0.447 15.66 0.550 0.0451
DP 80.67 0.312 0.384 0.017 4.17 0.171 0
GN 87.35 0.601 0.029 0.424 15.28 0.483 0.0227

Our BS 89.18 0.660 0.109 0.222 9.62 0.248 0.0006
Our PS+ 88.21 0.631 0.372 0.004 4.33 0.170 0.0001

TABLE II
THE COMPARISON OF UTILITY AND PRIVACY ON DIFFERENT METHODS

UNDER THE BLACK-BOX ATTACK. CLASSIFICATION TASK IS CONDUCTED
ON CIFAR10. ↑ DENOTES DESIRABLE DIRECTIONS, AND ITALICS MEANS

UNACCEPTABLE RESULTS.

Methods Utility Privacy
Acc ↑ MSE ↑ PSNR ↓ SSIM ↓ F-SIM ↓

SL 98.36 0.362 4.64 0.367 0.678
Our PS 96.99 0.696 1.670 0.104 0.498

Our BS 75 96.16 0.730 1.463 0.084 0.513

(a) Input (b) SL (c) Our PS (d) Our BS 75

Fig. 7. Examples of reconstructed images by the black-box attack against
different defense methods on Cifar10.

offline. It is a metric used to evaluate whether a user’s
identity has been leaked.

Efficiency: This metric decides how the algorithm is readily
deployed to real-world edge devices. The following metrics are
used.
• Macc Edge: MAC operation counts records the number

of multiplication and addition operations for computation
on a neural network.

• Mem Edge : Memory cost on the edge for completing
the training task.

B. Privacy and Efficiency

We report the evaluation results in this section.

TABLE III
THE COMPARISON OF UTILITY AND PRIVACY

ON DIFFERENT METHODS UNDER THE
BLACK-BOX ATTACK. CLASSIFICATION TASK

IS PERFORMED ON CRITEO. ↑ DENOTES
DESIRABLE DIRECTIONS.

Methods Utility: Acc ↑ Privacy: MSE ↑

SL 77.81 0.0012
Our PS 77.78 0.0015

GN 77.28 0.0012

X

ŶCloud

Edge

Embedding Layer

Dual-FEN Layer

Combination Layer

Reweighting Layer

Prediction Layer

M

Fig. 8. The illustration of
deployment of DIFM over
the edge and the cloud.

1) Black-Box Attack: For the attack model, we adopt a
similar structure to the edge model: an MAE decoder [18]
is used, and is pretrained on ImageNet. We slightly modified
the MAE decoder by adding a position embedding layer at the
head of the decoder and a Tanh activation layer at the rear. The
attack model is trained with an MSE loss and is optimized by
AdamW optimizer with a learning rate of 1.5−5 and its default
hyperparameters. We train the attack model on the original
training set for 50 epochs until full convergence and test it
on the testing set. Note that our attacker represents a worst-
case adversary, as a real-world attacker hardly accesses the
private training data. Hereby the privacy performance reported
is worse than that in practice. Each experiment is repeated
three times to report the average results.

The results of CelebA is shown in Table I and Fig. 6. The
identification network we use to measure ‘ID’ achieves 1.57%
error rate on the original dataset. We can see that Adv, Blur,
GN, and our methods achieve good utility performance, but
Adv, GN, and Blur do not maintain a privacy guarantee. While
DP has a satisfying privacy level, it leads to poor utility. Both
batch shuffling and spectral shuffling enjoy desirable tradeoffs
but differ in details: spectral shuffling completely removes
the facial information while batch shuffling allows an attacker
to recover a face different from the original one. It suggests
spectral shuffling completely destroys the input, whereas batch
shuffling somehow retains some average input information, as
all the shuffled patches are human faces. We still consider the
latter defense a successful one as it would mislead the attacker
into a wrongly reconstructed face image.

On Cifar10, Table II reports the utility and privacy results
and Fig. 7 are examples of the reconstructed images by the
attack. It can be observed that our methods work well on
natural images regarding accuracy and privacy.

On Criteo, we apply Our PS to the core vector-wise part of



(a) SL/Adv (b) Blur (c) DP (d) GN (e) Our PS (f) Our BS (g) Our PS+ (h) Jigsaw to
Our BS

Fig. 9. Examples of reconstructed images by the white-box attack against different defense methods on CelebA. The original input is the same as in Fig. 6.
Jigsaw means attacker first performs Jigsaw attack, and then launch the white-box attack.

TABLE IV
THE COMPARISON OF PRIVACY ON DIFFERENT METHODS UNDER THE

WHITE-BOX ATTACK TO THE CLASSIFICATION TASK ON CELEBA. ↑
DENOTES DESIRABLE DIRECTIONS, AND ITALICS MEANS UNACCEPTABLE

RESULTS.

Methods MSE ↑ SSIM↓ PSNR ↓ F-SIM ↓

SL/ Adv 0.011 0.647 19.74 0.602
Blur 0.038 0.215 14.15 0.439
DP 0.798 0.0006 0.98 0.111
GN 0.826 0.0006 0.83 0.108

Our PS 0.930 0.0005 0.32 0.131
Our BS 0.914 0.0005 0.39 0.082

Our PS+ 0.716 0.0001 1.45 0.123

Jigsaw + WhiteBox Attack
Our BS 0.871 0.0007 0.60 0.132

DIFM. The attacker model also has a transformer structure,
containing a vector-wise part and an output MLP layer. The
training hyperparameters are set as default in DIFM. For a fair
comparison, we measure the mean absolute values between
the two random input features, which is 0.003. We compare
feasible baselines and display the results in Table III. For GN,
Gaussian noise is randomly sampled from N (0, 0.001), which
although does not hurt accuracy too much, its MSE under
attack, almost remains the same with the unprotected SL. If
we adopt N (0, 1) in GN, the reconstruction MSE would be
0.0014, which is still inferior to the privacy level provided by
our method. Meanwhile, our method could achieve accuracy
close to SL.

2) White-Box Attack: Since the white-box attack directly
optimizes the guess value X̃ over the known model weights
at the edge, its success rate is independent of the auxiliary
data. We train the white-box attack for 100,000 iterations with
Adam optimizer (lr = 0.001) to attack the defense on CelebA.
Batch size is 16.

Table IV shows the attack results. Split learning and ad-
versarial learning-based methods share the same privacy level
as Adv has the highest attack success rate right at the start
of training when the model weights are not optimized yet
(the defense has not begun). The transform-based methods all
enjoy good privacy performance as they introduce randomness,
which is defensive to white-box attacks. Also, introducing
randomness, our methods are the strongest, as recovering from
randomly shuffled patches is extremely difficult. Even if the
attacker is aware of the model weights, it is hard to learn
the correct permutation out of that many possible sequences

TABLE V
THE PRIVACY OF ADV OVER THE TRAINING PROCESS OF CELEBA.
↑MEANS DESIRABLE DIRECTIONS, AND THE ITALICS DENOTES

UNACCEPTABLE RESULTS.

Training Iterations MSE ↑ SSIM↓ PSNR ↓ F-SIM ↓ I ID ↓

1000 0.014 0.669 18.69 0.925 0.909
20000 0.083 0.290 10.85 0.71 0.0003

Converged 0.373 0.042 4.29 0.117 0.0001

(a) Our BS (b) GN (c) Adv 1000 (d) Adv 20000 (e) Adv Con-
verged

Fig. 10. The adaptive attack to the same input in Fig. 6. Our BS displays the
reconstruction results on 30 rounds of the smashed data collected in training.
GN displays the result of averaging 60 noisy images with the Gaussian noise
sampled from N ∼ (0, 4). Adv does not defend the attack during training.

as in Eq. 7 (N = 196 here). Despite that, we complement
another attack called Jigsaw solving [32] trying to infer the
correct permutation, and adopt the permutation to launch the
white-box attack. As shown in Table IV, the attacker fails to
recover a sequence close to the original input. Fig. 9 shows
the reconstructed instances by the white-box attack. It can be
told that GN and Blur still leak out some outline of the input,
while our methods can prevent the adversary from recovering
anything.

3) Adaptive Attack: In an adaptive attack, an attacker can
supervise the entire training process to launch the attack.
Hence, we compare the inversion results at different training
iterations in Table V and Fig. 10. As different training
iterations play no difference to our methods compared to the
black-box attack, we omit the part of results. However, such
a difference is significant to Adv. It is observed that privacy
can only be guaranteed upon convergence; when the model is
not converged, an attacker can easily invert the input from the
smashed data. Hereby we claim Adv cannot defend against
adaptive attack.

Besides using the smashed data from one iteration, an
attacker can also infer the private data from the smashed
data collected in multiple training rounds. For instance, in
DataMix [10], during the training process, attackers can aver-
age a large set of mixtures that contain the same raw image



TABLE VI
THE EFFICIENCY OF DIFFERENT

METHODS IN THE SPLIT LEARNING. ↑
MEANS DESIRABLE DIRECTIONS.

Methods Macc Mem
Edge (M)↓ Edge (G)↓

SL / Transform 3.10 0.97
Adv 81.63 2.43

Our PS/BS 3.10 0.97
Our PS+ 1.18 1.01

0 20 40 60
Training Epoch

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 L
os

s

SL
Our PS
Our BS
Our PS+

Fig. 11. Training losses in split
learning for different methods.

to recover the input. The attack is particularly effective on
noise insertion-based methods in averaging out the noise: If
we train a model for e epochs with noise ∼ N (0, σ). After
averaging the smashed data, the noise will follow N (0, σ√

e
),

which lowers the privacy level. Taking Fig. 10 as an example,
if we apply the Gaussian noise once to the image, it will be
reconstructed as the occlusive result in Fig. 9(d). However, if
the attacker collected the same image 60 times in training, its
reconstructed results would be as in Fig. 10(b).

For our method, we take batch shuffling as an example and
evaluate it against the adaptive attack. We sampled 30 rounds
of the smashed data for each image, every other epoch. Then
we concatenate them and feed them into the MAE decoder.
The reconstruction performance is evaluated as MSE 0.111,
SSIM 0.263, PSNR 9.59, F-SIM 0.269, and ID 0.0008, which
is approximately at the same level as the one under the black-
box attack. This is because the space of possible permutation
sequences is so large that multiple rounds of the smashed data
hardly help. Its visualization effect is displayed in Fig. 10(a),
which is an obviously misleading one from the original input
in Fig. 6.

4) Efficiency: We test the efficiency on a single image
of size 224 × 224 and provide the results in Table VI. Our
methods of patch shuffling and batch shuffling share the same
efficiency level as the unprotected split learning, while spectral
shuffling incurs a bit less overhead as we place the first layer
of the transformer block at the cloud. For Adv, the overhead is
significant as training against a simulated attacker is involved
at the edge. The convergence performance of our methods is
given in Fig. 11, which is comparable to SL.

C. Ablation Study

1) Setting of k: An important hyperparameter is k in batch
shuffling. By changing the value of k, we can choose different
tradeoffs between privacy and utility. Hence we show the
results with different ks in Table VII and examples in Fig. 12.
The trend is that with a bigger k, one can achieve a better
utility but lower privacy. We select k = 0.4 on CelebA as it
denotes the best tradeoff.

2) Attackers Trained on Public Dataset: In evaluating
defenses against the black-box attack, we train the attack
model and evaluate the result on data coming from the same
distribution. While, in most situations, the attacker has no
access to data following the same distribution as the training

TABLE VII
THE UTILITY AND PRIVACY WITH DIFFERENT kS IN BATCH SHUFFLING. ↑

MEANS DESIRABLE DIRECTIONS.

k
Utility Privacy
Acc ↑ MSE ↑ SSIM↓ PSNR ↓ F-SIM ↓ ID↓

0.5 90.29 0.071 0.320 11.47 0.36 0.0004
0.4 89.18 0.109 0.222 9.62 0.25 0.0006
0.25 88.54 0.128 0.231 8.94 0.21 0.0006
0.15 88.76 0.184 0.178 7.35 0.18 0.0002

(a) 0.5 (b) 0.4 (c) 0.25 (d) 0.15

Fig. 12. The example of black box attack results of the input in the Fig. 6
with setting different ks in Batch Shuffling

TABLE VIII
PRIVACY METRICS OF BLACK BOX ATTACK RESULTS OVER BATCH

SHUFFLING. ↑ MEANS BETTER

Methods MSE ↑ SSIM↓ PSNR ↓ F-SIM ↓ ID↓

Public dataset: CelebA. Private dataset: LFW

SL 0.011 0.705 19.31 0.937 0.99
Our BS 0.152 0.203 8.22 0.269 0.013

Public dataset: LFW. Private dataset:CelebA

SL 0.086 0.342 10.75 0.650 0.1274
Our BS 0.243 0.079 6.16 0.148 0

(a) Input (b) SL (c) Our BS

Fig. 13. Black-box attack to batch shuffling.
Public dataset: CelebA. Private dataset:
LFW.

(a) SL (b) Our BS

Fig. 14. Public dataset: LFW.
Private dataset: CelebA. Input
is the same as in Fig. 6.

data. To mimic the attack, we let the attacker train its model
over a public dataset and evaluate the privacy of the private
dataset. Hence we use LFW [33] as the public dataset,
which contains 13,233 faces from 5,479 different persons.
The InceptionResNetV1 identification accuracy on LFW is
99%. The batch shuffling results are given in Table VIII. As
Fig. 14 shows, even if the public dataset is smaller than the
private dataset, and the data follows a different distribution,
our method successfully defends against black-box attacks.
We also show a complementary result in Fig. 13 where the
role of CelebA and LFW is switched, too see the conclusion
still holds.

3) Other Attacker Model : Besides using the transformer
structure as the attacker model, we also test against attackers
with different networks and we adopt representative convolu-
tion neural network (CNN) pix2pix [9]. Pix2pix is trained as



TABLE IX
THE COMPARISON OF PRIVACY ON BLACK-BOX

ATTACK WITH PIX2PIX OVER CELEBA. ↑ DENOTES
DESIRABLE DIRECTIONS, AND ITALICS MEANS

UNACCEPTABLE RESULTS.

Methods MSE ↑ SSIM↓ PSNR ↓ F-SIM ↓ ID ↓

SL 0.042 0.453 13.77 0.382 0.033
Blur 0.052 0.360 12.88 0.249 0.006
GN 0.267 0.209 5.82 0.131 0.0002

Our BS 0.435 0.068 3.67 0.115 0.0003
Our PS+ 0.265 0.117 5.82 0.117 0.0002

(a) Input (b) SL

(c) BS (d) PS+
Fig. 15. Examples
of reconstructed im-
ages by pix2pix on
CelebA.

a black-box attacker model using its default hyperparameters.
The privacy performance is shown in Table IX and example
results are in Fig. 15. As pix2pix is a CNN-based GAN
method, the network heavily depends on position information.
It is clear that shuffling over patches completely destroys the
pix2pix attacker’s ability in reconstructing private data.

VI. CONCLUSION

We address the important issue of training data privacy
in split learning. We designed a novel and practical patch
shuffling scheme by drawing on the robustness property of
the cutting-edge model transformers. We further propose batch
shuffling and spectral shuffling to remove patch correlations,
enhancing privacy guarantees. While being almost as efficient
as vanilla split learning, our methods achieve competitive
performance regarding utility and privacy.
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