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Abstract—While deep neural networks (DNNs) have led to
a paradigm shift, its exorbitant computational requirement has
always been a roadblock in its deployment to the edge, such as
wearable devices and smartphones. Hence a hybrid edge-cloud
computational framework is proposed to transfer part of the com-
putation to the cloud, by naively partitioning the DNN operations
under the constant network condition assumption. However, real-
world network state varies greatly depending on the context, and
DNN partitioning only has limited strategy space. In this paper,
we explore the structural flexibility of DNN to fit the edge model
to varying network contexts and different deployment platforms.
Specifically, we designed a reinforcement learning-based decision
engine to search for model transformation strategies in response
to a combined objective of model accuracy and computation
latency. The engine generates a context-aware model tree so that
the DNN can decide the model branch to switch to at runtime.
By the emulation and field experimental results, our approach
enjoys a 30%− 50% latency reduction while retaining the model
accuracy.

Index Terms—Edge Cloud Computing, Neural Architecture
Search, Reinforcement Learning

I. INTRODUCTION

With the recent surge in the popularity of deep learning,
edge computing platforms have begun to embrace the trend
of using deep learning models. Smartphones and wearable
devices are now communicating with users through ‘smart’
interfaces such as faceID, voice commands, typing sugges-
tions, shopping recommendations, and many others, all driven
by deep learning algorithms and DNN models. However, there
is still a wide gap between the DNN capability that the edge
devices can fully utilize and the state-of-the-art DNN power,
largely due to a lack of computational resource and stringent
latency requirement on devices.

Even equipped with the most advanced chips, today’s edge
devices are still at least 10 times slower than a GPU-powered
server. On the other hand, with the rapid development of
5G, fast connectivity has become pervasive. The hybrid edge-
cloud computing infrastructure is introduced to exploit the
best of two worlds: by offloading intensive computation to
the remote cloud server and retrieving the results, the edge
is gaining significant speedup. Previous works [1]–[7] have
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closely studied partitioning and offloading policies. However,
those policies are not satisfactory: since the structure of the
DNN is fixed, one usually does not have much feasible
choices, but only partition the DNN rigidly. Further, previous
works always implicitly assume a constant context at the
inference runtime. These two reasons inhibit the edge DNN
from fully utilizing the edge-cloud infrastructure.

Most previous works only consider partitioning within a
fixed DNN while ignoring its structural flexibility. In fact, a
DNN can be transformed into another with mild degradation
on the performance. Considering the resource limitation of
the edge device, we can not only partition the DNN, but
also compress the part residing on the edge to accelerate
computation further. Previous works on neural architecture
search [8], [9] have shown the viability of the approach. By
trading off the model accuracy for a smaller model size, we
reduce the computation time, the storage space and the energy
consumption on edge devices. This inspires us to explore the
sub-model structure of a DNN model for seeking the optimal
placement strategy, which potentially leads to a better trade-
off between computation accuracy and latency, since the search
space has been enlarged.

In practice, the assumption of constant network condition
at runtime rarely holds, because inference on complicated
DNN models is typically computation-intensive and time-
consuming, particularly those continuously receive and process
inputs. Moreover, the edge devices are often in a constantly
changing environment, such as switching from 4G to WiFi,
from a still state to a moving one, etc. If taking the varying
context into account, many of the previous approaches would
perform poorly or even fail. If a decision engine only makes
the placement decision once for all before inference, it is quite
possible that the network condition would change during the
inference, which means the original placement decision is not
optimal from a temporal point of view. For example, if the
network connectivity is poor at the beginning, the decision
engine has determined to compress the model to run on the
device; it will later regret its decision when the network
condition gets better, and a fully-fledged model could have
been running. The varying environment leads to challenges as
well as opportunities for optimizing the DNN structure and
placement, if we think about searching in a dynamic, rather
than static DNN architectural space.

In a nutshell, we propose to search for the optimal DNN



deployment strategy in a richer context (with the awareness
of varying network states) and larger space (in terms of the
model granularity). By choosing a series of compression and
partitioning strategies, the DNN is transformed into different
states sequentially, the process of which can be modeled by a
Markov Decision Process (MDP). Besides, the strategy search
space is huge as we need to select compression techniques for
each layer and decide to partition per DNN block. Thus, we
employ a reinforcement learning-based optimizer to solve the
MDP problem. Highlights of our contributions are:
• By expressing the DNN placement and structures as

unified hyperparameters, we design a reinforcement
learning-based engine to search for the optimal strategy
to transform base DNN models.

• We propose a flexible model structure so that it can
make the decision of compression and partition on the
fly depending on the real-time context.

• We implement the decision engine and test it in a variety
of real-world scenarios. The results show that our method
reduces 30%− 50% inference latency while keeping the
accuracy loss at about 1%.

II. RELATED WORK

While DNN and deep learning algorithms have been widely
applied, it still faces significant computational challenges when
migrated to the edge. A wide range of work has been proposed
to address the issue.

A. Running DNN in Mobile Systems

The focus of this category lies in speeding up the execution
of DNN on the edge device, either by taking advantage of
the hardware or designing a suitable DNN structure to run
on the device. To fully utilize the processors on the device,
Lane et al. [10] were among the first to design a low-power
DNN inference engine on the device, taking advantage of
both CPU and DSP chips to collaborate on mobile sensing
and analysis tasks. Later, in [11] they decomposed the DNN
architectures into blocks of various types, with each block
efficiently executed by heterogeneous local device processors
such as GPUs and CPUs.

There are works trying to explore the model’s internal
structure to speed up execution. For example, Huynh et al.
[12] and Xu et al. [13] specifically exploited the inputs’
temporal locality for reusing the results of the previous frame
for calculating the current frame. The results of reusable image
regions were cached to facilitate execution. Other works [1],
[8], [14], [15] explore the accuracy-latency trade-offs for each
deep learning model to fit the model’s resource demand to
a system’s available runtime resources. In particular, Fang et
al. [15] employed a novel multi-capacity model comprised of
a set of models with different resource-accuracy trade-off for
dynamically selecting the optimal one at runtime. Our data
structure — model tree — shares some similarities with the
multi-capacity model but with different purposes: we store the
optimal strategy of adjusting the DNNs in accordance with
varying network conditions, with the support of the cloud. Liu

et al. [8] explored the trade-off between model accuracy and
system performance with a reinforcement learning-based ap-
proach to find a set of compression techniques to transform the
DNN into one that fits the customized system requirements.
Differing from their work, we take the reinforcement learning-
based approach to compute the optimal solution across the
edge and the cloud.

B. Edge-Cloud Deep Learning
Although the cloud would provide abundant computational

power to support DNN inference, as pointed out in [4],
a straightforward partitioning of DNNs over the computing
hierarchy may incur prohibitively high communication costs.
Hence a number of works [1], [2], [4]–[6] proposed various
ways to minimize such cost. In [4], Teerapittayanon et al.
proposed to divide the DNN into different modules to de-
ploy on the edge-cloud to improve the accuracy and fault
tolerance while keeping the communication cost low. Han et
al. [1] systematically traded off DNN classification accuracy
for resource use in the multi-programmed, streaming setting
with an optimization-based heuristic scheduling algorithm. Lin
et al. [6] extended the problem to contain multiple edges,
fogs, as well as cloud devices, and solved it with a genetic
algorithm. Besides heuristic algorithms, some works proposed
deterministic algorithms to find the optimal partition policy.
Kang et al. [2] managed to find the optimal partition for chain-
like DNNs. Hu et al. [5] turned the problem into a min-cut
problem and found the optimal partition for DNNs represented
by Directed Acyclic Graphs.

The aforementioned works typically optimized the con-
figuration of a DNN under a constant network state and
ignored architecture transformation of the deployment target.
In contrast, we search for both compression and partition
strategies without assuming that the network condition stays
the same during DNN execution. To address the issue, we
propose to compose the DNN on the fly from a model tree
trained offline. The approach is able to find a more suitable
DNN configuration scheme than the fixed plans.

C. DNN Compression
Our work adopts a variety of DNN compression techniques

for DNN transformation. Many compression techniques have
been proposed as in [11], [16]–[22]. In [16], Han et al.
proposed to prune unimportant model weights to compress
the neural network. Along with quantization, their method has
reduced the neural network size by 35 times with almost no
accuracy degradation. Unlike the non-structured pruning in
[16], structured pruning kept the layer-wise structures intact
but shrank the size of the neural network by removing the
entire layer or scaling down the kernel size or the filter number
[17]. Targeted at multiple mobile platforms, Liu et al. [8]
trimmed down the network complexity by several compression
techniques to fit resource constraints.

III. PRELIMINARIES

In this section, we give a brief overview of the techniques
adopted in this paper.



Fig. 1. Real-world network context.

A. Neural Architecture Search

Until now, the architecture of most neural networks are
subject to manual selection, but there is an ongoing trend to au-
tomatically search for optimal neural network structures [23],
of which the accuracy could match the hand-designed one.
However, the automatic search faces significant challenges
when the state space is huge, and the choice of search space
largely determines the difficulty of our problem. It is often
critical to design the action space so that the optimization
method can effectively search in the state space. To address
the issue, we propose a two-stage strategy for reducing the
search space.

Many search strategies can be used to explore the search
space, such as greedy search, random search, Bayesian opti-
mization, evolutionary methods, reinforcement learning, and
gradient-based methods. Under the assumption of fluctuating
network conditions, the decision engine needs to decide the
compression and partition strategy according to the changing
network context. The search space is that of the two strategies
combined and can be huge. Hence we adopt a reinforcement
learning-based approach and carefully design its action space,
state space, and reward function to effectively search for an
optimal policy.

B. Reinforcement Learning

Reinforcement learning is mostly concerned with how soft-
ware agents take actions in an environment to maximize
the cumulative reward. At each state, the agent takes action
and communicates with the environment, which returns new
observations and a reward for the current state and action. The
agent adapts its policy, which returns a new action, and the
action would lead to a new state of the agent. The objective of
the agent is to learn an optimal policy to maximize the reward
accumulated in the long run.

Since the optimal policy is far too complicated to find,
many methods are proposed to approximate one. For example,
there are value-based methods, policy-based methods, and
combined methods like Actor-Critic. In our work, we adopt the
Monte-Carlo policy gradient, a simple version of the policy-
based method, to search for the optimal DNN structure and
placement strategy across the edge and the cloud.

IV. MOTIVATION AND OVERVIEW

We first examined the static network assumption that most
previous works make. We inspect the real-time bandwidth in
different circumstances and Fig. 1 gives two samples. One

TABLE I
INFERENCE LATENCIES ON XIAOMI MI 6X WITH INPUT SIZE:

1× 224× 224× 3.

Model Latency(ms)
VGG19 5734.89

ResNet50 1103.20
ResNet101 2238.79
ResNet152 3729.10

sample depicts the bandwidth under 4G when the device
moves quickly outdoor and the other shows a weak WiFi signal
indoor. Both of them are measured on smartphone Xiaomi MI
6X. We observe the bandwidth changes drastically even within
a small time window like 1s. However, on the same device,
the inference time of classical deep learning models is larger
than this scale as reported in Table 1.

The following example motivates our design. Imagine we
have a DNN inference application that takes advantage of the
edge-cloud infrastructure by sending intermediate-layer fea-
tures to the cloud. Without inspecting the network condition,
the application may make a bad decision and offload features
when the network connectivity is poor. However, even if we
inspect the network condition to decide when to offload, we
may regret the decision at a later time if the network condition
fluctuates during the inference. For example, the network
condition may be poor at the beginning, and the decision
engine determines to run a compressed DNN model on the
device to obtain a result of lower accuracy; however, as the
network condition instantly gets better, the running application
misses the opportunity to offload fully-fledged features to the
cloud to complete the task.

Our solution lies in exploring the sub-model structure of
DNNs to seek the optimal decision in response to the varying
network condition. The architecture and deployment of the
DNN are determined on the fly at the time of inference. In the
above example, we could have chosen to propagate the neural
network on the device until the time point that the network
connectivity recovers, and then offload the rest computation to
the cloud. If the network connectivity does not get better, we
can choose to run a compressed model on the device. By taking
context into consideration, we make more precise offloading
decisions for DNN inference.

Overview. To enable faster and more accurate DNN infer-
ence on the edge, we design a DNN structure and placement
decision engine as shown in Fig. 2. The decision engine
is trained offline to meet customized accuracy and latency
requirements under various contexts. More precisely, the de-
cision engine learns the strategy to cope with the varying
context by transforming each DNN block and configuring its
placement. The two strategies are compression and partition.
The transformation result is stored as a data structure called
model trees such that each branch (from the root to the leaves)
represents a complete DNN model.

At the online phase, if the user runs the DNN inference
API, the decision engine fires to decide which branch of the



model tree as the inference model. Before running each block,
the engine decides whether the block should run on the device
or on the cloud. If no offloading takes place, before running
the following block in sequence, the decision engine makes
a decision about the following block based on the current
network condition. The procedure repeats until all computation
is transferred to the cloud or inference is done on edge. To
sum up, the decision engine selects which branch to switch
to at each fork of the model tree, and each selection it makes
composes a complete DNN model.

Design space. Overall, we aim to design a decision engine
to learn the strategy of transforming the DNN model and
placing blocks to different platforms to reach the sweet spot
in the trade-off between accuracy and latency. Moreover, we
make searching highly efficient by using a predefined model
tree structure. A branch of the tree represents the most suitable
DNN model within the given context.

Offline 

Phase

Online 

Phase

Sending 

Features

Base DNN Models

RL-Based Optimizer

Partition Compression

Network Conditions

Latency & Accuracy Model Trees

Compose DNN

from Model Tree

at Runtime Running on Edge Running on Cloud

Fig. 2. Reinforcement learning based decision engine for searching the
optimal DNN structure and placement.

V. A REINFORCEMENT LEARNING
BASED DECISION ENGINE

In this section, we introduce our decision engine which
transforms the DNN model and decides where to place the
model blocks. For simplicity of discussion, we assume the
network connectivity remains constant throughout the infer-
ence period for now. We first model the DNN transformation
and placement as a Markov Decision Process which gradually
modifies the DNN layer by layer. Then we introduce the
accuracy and latency objective. The detailed method will be
given in the end.

A. Markov Decision Process

We formally define the model searching problem as a
Markov Decision Process (MDP). We aim to search for the
optimal DNN configuration strategy π across the edge and the
cloud in accordance with the current network context. We learn
such a strategy through a MDP model M = (S,A,P, r, γ)
where its major components are defined as follows.

State: We consider the DNN model with its configurations
(in terms of partition and compression) as the state s ∈ S
which can be switched from one to another should an action
be taken. We explicitly express a DNN layer as a sequence
of its hyper-parameters. For example, the i-th layer can be
denoted as

xi = (l, k, s, p, n) (1)

where l, k, s, p, n respectively represent layer type, kernel size,
stride, padding, and the number of output channels. This
formulation can be easily extended to include other hyper-
parameters, for example, the starting and terminal layer of a
skip connection in ResNet. Since a DNN layer is described by
a string, we can use a sequence of strings to denote the state
of an entire DNN model.

Action: An action a ∈ A transfers one state to another.
There are two kinds of actions involved in this paper to
configure a DNN model. One is partition — dividing the DNN
into parts running respectively on the edge and the cloud. The
other is compression, transforming one DNN model to a more
compact one.

Policy: π decides which action to choose under a given
state. Formally, π : S → A. Here we adopt a stochastic policy,
where π(a|s) = P(At = a|St = s).

Transition Probability: The transition probability P
records the probability of transition from one state to another
after taking an action. In this project, all the probabilities are
deterministic since every action definitely changes the state.

Discount Factor: γ represents how a reward’s importance
decays given a series of rewards. We set γ = 1 to make each
reward contribute equally to the final return.

Reward: Reward r : S 7→ R stands for the gain of a state.
However, we do not assign rewards to intermediate states. The
reward is only calculated for the final DNN state when both
partition and compression are done.

B. Reward Function

We take a combination of the accuracy and latency mea-
surement as the reward for each state. We explicitly define
these two metrics as well as the reward function.

Without loss of generality, we consider a classification
task as an example, but similar strategies can be derived
for other tasks. Let the dataset consist of m examples:
D = {(x1, y1), . . . , (xm, ym)} where X = {x1, . . . ,xm}
denotes the set of input images and y = {y1, . . . , ym} is the
corresponding true label. The parameters of the DNN models
at the edge and the cloud are respectively θe and θc. Hence
the accuracy is defined as

A = 1−
∑
i

1[ŷi 6= yi]/m

= 1−
∑
i

1[fc(fe(xi; θe); θc) 6= yi]/m.
(2)

Note that as long as the DNN is composed by θe and θc,
accuracy has nothing to do with where we partition the model
parameters between the edge and the cloud.

The latency of running the inference algorithm consists
of three parts: the running time on the edge Te, the transfer
latency Tt, and the running time on the cloud Tc. It can be
expressed as:

T = Te + Tt + Tc. (3)

We assume the size of the final result is so small that the
latency of transferring it back to the edge can be ignored. We



indeed can measure latencies by real-world experiments but
found it extremely inefficient and inaccurate. On the contrary,
a proper estimation model can quickly give an approximate
latency. Thus we adopt the estimation method and show how
to estimate the latency for each part.

Computational latency Te, Tc. The running time depends
on the computational platform, as well as the total number of
multiply-accumulate operations (MACCs) [24]. Most MACCs
spent for DNN inference lie in two types of layers — convo-
lutional (Conv) layers and fully-connected (FC) layers. Other
layers like batch normalization layers, pooling layers, and
drop-out layers cost little time according to our measurement
and can be ignored.

Hence we approximate the total number of MACCs as the
sum of MACCs in the Conv and FC layers, and the MACCs
for each type of layer can be calculated as follows:

#MACCconv = K ×K × Cin × Cout ×Hout ×Wout, (4)

#MACCFC = Cin × Cout, (5)

where K represents the kernel size, Hout,Wout are the height
and width of output feature, and Cin, Cout denote the number
of input and output channels of the layer.

Our experimental results on a number of devices reveal the
linearity between the number of MACCs and computational
latency. For FC layers, the coefficients between the MACCs
and the computational latency are the same for the same
device, whereas the coefficients differ by kernel sizes for Conv
layers. The linearity between computational latency and the
number of MACCs is salient on CPU-based platforms like
smartphones, but obscure on GPU-based platforms because
of their parallel executions. However, a rough estimation of
the computational latency is enough because our work is not
specific to any particular estimation model. For a real-world
evaluation of such a latency model, please refer to Sec. VII.

Transfer latency Tt. Frequently-used file transfer protocols
send packages in the pipeline, and thus the transfer latency
can be divided into two parts — propagation delay for the
first package and transmission delay for the rest of the file.
When the file size is not too large, these two delays can be
considered approximately linear to the file size.

We represent the latency for the first package’s propagation
as a linear function of file size given bandwidth, and trans-
mission delay as file size over bandwidth. Formally, we adopt
the following model for estimating the transfer latency:

Tt = f(S|W ) +
S

W
, (6)

where S means the file size measured by bytes, W means
bandwidth and f(·) is a linear function of S given W . We
conduct a series of experiments to fit function f(·) to estimate
transfer latency based on S and W . Please refer to Sec. VII
for an evaluation of the model.

Given the above definitions about the accuracy and the
latency, our reward function is defined as

R = N1(A) +N2(T ), (7)

where N(·) are the normalization functions, A is the accuracy
and T is the latency. Since the units for accuracy and latency
are different, we normalize them in the reward

N1(x) =
x−minx

maxx −minx
, N2(x) =

maxx − x
maxx −minx

,

to balance the contribution of the two metrics to the total
reward. A weight factor can also be applied should we assign
different weights to the two metrics.

Algorithm 1 Model Compression and Partition
Input: a base DNN model B, a network bandwidth W
Output: a partitioned and compressed DNN model C

1: repeat
2: Initialize partition strategy πp and compression strategy

πc randomly;
3: Input B,W to the partition search controller, obtain

action ap ∼ πp, apply it to B and get Bedge, Bcloud;
4: Input Bedge,W to the compression search controller,

obtain action ac ∼ πc, apply it to Bedge and get B′edge;
5: Concatenate B′edge and Bcloud to compose a model C;
6: R← the reward of C;
7: Update πp with ap, R and πc with ac, R;
8: until both controllers converge;
9: return C with the highest reward

C. Optimal Branch Search

We show in this subsection how to search for a transformed
DNN model by two reinforcement learning-based controllers.
The algorithm is shown in Alg. 1.

Our algorithm takes in a pair of inputs — a pre-trained
DNN model as the deployment target and a pre-defined
network context. Here we use a constant network bandwidth to
represent the network context. The algorithm feeds the inputs
to the partition search controller and gets a partition strategy.
By the partition strategy, the DNN model is divided into two
parts: the first half remains on edge device and the second half
will be uploaded to the cloud. Next, the algorithm feeds the
DNN model on the edge to the compression search controller
and gets a combination of compression techniques. These
compression techniques are applied to the edge DNN model
layer by layer. By concatenating the compressed edge half and
the unmodified cloud half, we get a candidate DNN model.
As the last step, we compute the reward of this candidate
by Eqn. (7), and correspondingly update both controllers. The
procedure is repeated until both controllers converge, and the
candidate with the highest reward is the result. The detailed
structure and optimization techniques of controllers used in
Alg. 1 will be further described in the next section.

As one can tell, compared to a rigid partition policy,
our search engine searches partition as well as compression
strategies on a base DNN model. The two strategies interact
with each other and enlarge the search space, which leads to
a better trade-off. But the method has not considered contexts
and is still suboptimal. We will introduce a method in the



next section considering the network context and searching on
a new structure called ‘model tree’. Compared to model tree,
the method in this section works like searching on a particular
branch of the tree. So we name it as ‘optimal branch.’

VI. CONTEXT-AWARE MODEL TREE

We have shown how to search for the optimal DNN config-
uration strategy under a constant network context. However,
searching the optimal strategy under a varying network context
is more challenging. As we have shown in Sec. IV, it is very
likely that the network context fluctuates during inference, and
one may regret the decision made at the beginning. To deal
with the varying context, we novelly design a model tree by
taking advantage of the flexibility of DNN models.

A. Model Tree

Fig. 3 gives an example of a model tree. Formally, each
node of the tree stands for a DNN block containing one or a
few layers, either directly extracted or transformed from a base
DNN block. If we consider K types of network conditions for
a total of N blocks, in the worst case, we have a complete
tree with N layers and K forks for each node in the tree.
The child node at the k-th fork of node i represents that
the corresponding block is chosen to append to node i. A
DNN model is composed by sequentially adding blocks in
accordance with the network condition until reaching the final
layer of the tree or reaching a node that transfers computation
to the cloud. Hence each branch of the tree, from the root to
the leaf, constitutes a valid DNN model.

base DNN block

compressed 

block

run on the edge run on the cloud
composed DNN model

a branch

Fig. 3. The composition of a DNN model.

The model tree is designed to take advantage of the flexibil-
ity in DNN models — it is possible for several DNN models to
share parts of model parameters but also have their distinctive
parts, and those models will end up with different architectures
and performance. In particular, the sharing mechanism has
great flexibility in deciding how much and what to share, if
new models are transformed from one base DNN structure.
A model tree can be obtained by composing different blocks,
where each block is either trained branch by branch or simul-
taneously. The blocks can be generated by compressing the
base DNN models with different compression techniques or
growing each from scratch. Once trained, each block becomes
‘pluggable’ such that a block can substitute another at the
inference time depending on its structure and performance.
In the online (inference) phase, our decision engine examines
the network condition and composes the new DNN block by
block. In the worst case, the decision engine iterates through

a total of KN nodes to compose a DNN to run on the edge
device. Alg. 2 gives the detail on how to compose a DNN
model from the model tree.

Model tree provides us a new dimension of the search space
— it depicts the possibility of how a model could vary in time.
As we have discussed in the previous section, the optimal
DNN configuration found at the static context can be viewed
as a local optimum, i.e., the optimal decision made on a branch
of the model tree. With varying network contexts, we would
like to search for a global optimum by considering the time
perspective: each block would have different structures and
thus different inference duration; partition and compression
decision should not only be made for static network contexts
but also for a series of possible states.

Algorithm 2 Composing a DNN Model from a Model Tree
Input: a N -layer K-fork model tree E
Output: a composed DNN model M

1: Initialize an empty DNN model M ;
2: Block B ← root node of E;
3: Concatenate block B to the model M
4: repeat
5: Measure current network bandwidth, and match it to

the k-th branch of B;
6: B ← the k-th child block of B;
7: Concatenate block B to the model M
8: until B’s child = ∅;
9: return M ;

Base Model

Forward Generation

Model Tree

Partition 

Controller

Compression 

Controller

Training Branch Model

Rewards of Leaf Blocks

Rewards of All Blocks

(R1+R2)/2

R1

R2

Backward Estimation

Update

Update

Retrieve Block

Insert Block

Fig. 4. Reinforcement learning based decision engine for searching the
optimal DNN structure and placement.

B. Optimal Tree Search

Following the same reinforcement learning-based frame-
work as in Sec. V, we propose a search framework for model
trees. Different from Alg. 1, the input to the algorithm is a
DNN block rather than the entire model. However, it is difficult
to determine the reward for a single block. In particular, the
accuracy of a block is unknown until we compose those blocks
into a model. Hence it is challenging to decide the partition
and compression strategies for a DNN block.

Fig. 4 illustrates the procedure of searching the optimal
strategy on a model tree. Since we take model accuracy into
account, rewards can only be calculated after a complete model



is built, or after completing updating a model tree branch. In
contrast, the states and actions are updated respectively for
each block. Therefore, the reward for each block’s actions
cannot be obtained immediately, but only after the model
tree branch is complete. To address the problem, we propose
Alg. 3, a two-stage process — the forward generation stage
and the backward estimation stage — to train the controllers.

In the forward generation stage, we generate a model
tree from a base DNN model considering various network
bandwidths, measure the reward for each branch, and assign it
to the leaf block of the branch. In detail, considering N blocks
and K kinds of bandwidths, we have a N -depth K-fork empty
complete tree as the model tree initially. We traverse every
node of the model tree in Breadth First Search (BFS) order.
Each node of the model tree is a block transformed from the
corresponding block in the base model by the compression
controller, with a deployment configuration decided by the
partition controller. Note that if we search the partition strategy
and compression strategy at the same time, the search space
would be huge and one cannot efficiently find the optimal
solution. Thus we reduce the search space by searching the
partition strategy first and then the compression strategy. Once
a partition occurs on one block, its following blocks are
directly inherited from the base DNN model, since we do not
need to compress model on the cloud. At the end of this stage,
we concatenate a model for each branch of the model tree,
measure its reward to assign to the leaf block of each branch.

In the backward estimation stage, we compute the reward
for actions on each block from leaf to root by averaging re-
wards of its child blocks. Each branch has a reward. However,
there is no clear definition for the reward of the shared blocks.
In our work, we assign a parent block’s reward as the average
of its child blocks’ rewards, and the reward for each block
is computed in a backward fashion from leaves to the root.
After the reward for each block is computed, we update the
partition and compression controllers with action-reward pairs
in the episode and start another episode.

In summary, we run a latent reward-assigning mechanism
to train our controllers. Actions are taken in the forward
generation stage to produce a model tree, whereas rewards
are assigned in the backward estimation stage.

C. LSTM-based Controller

Our reinforcement learning-based controllers adopt Monte-
Carlo policy gradient method. With this method, a model is
required to approximate the policy. In our work, we utilize a
recurrent neural network (RNN), particularly, a bidirectional
LSTM, as the model for controllers. This is because RNN’s
superior capability to search for hyper-parameters and its wide
application in neural architecture search.

Structures of the partition and compression controllers are
given by Fig. 6. The basic unit is a DNN layer. The controller
takes a sequence of layers’ hyper-parameters as input. And
a DNN layer xi is fed into a forward LSTM as well as a
backward LSTM to compute the corresponding hidden states
Hi. The partition controller outputs one action for a block

Algorithm 3 Model Tree Search
Input: a base DNN
Output: a model tree E

1: Initialize partition strategy πp and compression strategy
πc randomly;

2: Slice the base DNN into blocks;
3: Initialize an empty complete tree E with cloud flag 0;
4: repeat
5: for j-th-layer k-th-fork node i of E in BFS order do
6: Skip this iteration if node i has cloud flag = 1;
7: Bj ← the j-th block of the base DNN;
8: W ← the k-th type of the bandwidth;
9: Input Bj ,W to the partition search controller, obtain

action aip ∼ πp, and apply it to Bj ;
10: Input Bj ,W to the compression search controller,

obtain action aic ∼ πc, and apply it to Bj ;
11: Insert Bj to E at the position of node i ;
12: Ri ← 0;
13: if node i is a leaf node of E then
14: Get Bj’s ancestor blocks B1:j−1 from the 1-st to

(j − 1)-th layer of E;
15: Concatenate B1:j−1, Bj to compose a DNN;
16: Ri ← reward of the new DNN;
17: end if
18: if Bj has a partition then
19: Get Bj’s following blocks Bj+1:N from the (j +

1)-th to N -th blocks of the base DNN;
20: Insert Bj+1:N to E as the child of Bj ;
21: Mark the cloud flag of Bj+1:N as 1;
22: Get Bj’s ancestor blocks B1:j−1 from E;
23: Concatenate B1:j−1, Bj and Bj+1:N as DNN;
24: Ri ← reward of the new DNN;
25: end if
26: end for
27: for node i of E in reversed BFS order do
28: if node i has parent z whose cloud flag = 0 then
29: Rz ← Rz +

1
KRi;

30: end if
31: end for
32: for each node i of E do
33: Update πp with aip, Ri and πc with aic, Ri;
34: end for
35: until both controllers converge;
36: return E with the highest reward among all branches

of layers while the compression controller outputs one action
for each layer. The logits before the softmax represent the
preference of the partition layer or the set of compression
techniques that controllers choose over others. The partition
controller outputs ap, the layer to divide the DNN. The
compression actions aic for the i-th layer represent a set of
compression techniques that the controller decides. Given the
produced actions, we are able to transform the structure of a
DNN as well as its placement, and move it to the next state.



Fig. 5. Estimation model for the computational latency and the transfer latency.
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Fig. 6. The architectures of partition and compression
search controllers.

D. Optimization

We use the policy gradient method to update πp and πc in
each episode. The optimization procedure is the same for both
policies, thus we use π to represent a policy parameterized by
θ. According to the policy gradient theorem, for any differ-
entiable policy πθ(s, a) and any policy objective function, the
policy gradient of the objective function is,

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)Qπθ (s, a)] (8)

In Monte Carlo (MC) policy gradient, we replace the long-
term state-action value Qπθ (s, a) with its unbiased estimation
— total return G. Therefore, for each step in an episode
{s1, a1, r2, ..., sT−1, aT−1, rT } ∼ πθ, we have

∇θJ(θ) = ∇θ log πθ(s, a)Gt. (9)

We also apply a common trick, called baseline, to reduce the
estimation’s variance without affecting its expectation. Policy
gradient with baseline is shown as follow.

∇θJ(θ) = ∇θ log πθ(s, a)(Gt − b) (10)

Here we choose an exponential moving average of the
previous rewards as the baseline function b.

To facilitate convergence, we also adopt the technique of
knowledge distillation, i.e., we train each composed DNN with
the output logits of the corresponding base DNN instead of
ground-truth labels. In this way, the knowledge of the base
DNN can be exploited to speed up convergence and enhance
accuracy.

VII. EVALUATION

In this section, we show that our reinforcement learning
based decision engine is able to find the optimal DNN struc-
tures and placement across the edge and the cloud in a variety
of experimental settings. The results of simulation and field
tests are displayed by charts and figures.

Setup. We choose image classification on CIFAR10 as our
targeted task. VGG11 and AlexNet are chosen as the base

Fig. 7. Comparison of different search methods.

DNNs, whose baseline accuracy is 92.01% and 84.04%. For
the edge devices, we adopt two platforms: NVIDIA Jetson
TX2 (TX2), which is a GPU-based mobile computational
platform, and Xiaomi MI 6X (smartphone) with Android 8.1.0.
We test the algorithms in 11 real-life scenes for the smartphone
VGG11, 3 for the TX2 VGG11, and 4 for the smartphone
AlexNet. As to the cloud, we use two Intel Xeon Processor E5-
2630 with GTX 1080 Ti. For model compression, we adopt the
most common compression techniques summarized in Table 1.

We set the total number of blocks N = 3 and the number
of bandwidth types K = 2. Specifically, we choose the upper
quartile and the lower quartile of the bandwidth to represent
the ‘good’ and ‘poor’ network conditions. For normalization,
we set 50% to be the minimal accuracy, 100% the maximal
accuracy, 0ms the minimal latency and 500 ms the maximum.
The total reward is designed to be 400, where latency and
accuracy respectively take up 300 and 100.

Baselines. Our baseline is the method in dynamic DNN
surgery [5], which finds out the optimal partition for a fixed
DNN model under a constant network state by searching the
min-cut on a DAG. The method takes the network bandwidth
as an input to obtain an optimal cut on the DNN. We also
compare the reinforcement learning-based decision engine
with other methods, such as random search and ε-greedy



TABLE II
COMPRESSION TECHNIQUES

Name Replaced Structure New Structure Applied Layer Types
F1 (SVD) m× n weight matrix m× k and k × n(k � m) weight matrices FC layer
F2 (KSVD) same above same above with sparse matrices FC layer

F3 (Global Average Pooling) FC layers a global average pooling layer FC layer
C1 (MobileNet) Conv layer 3× 3 depth-wise Conv layer and 1× 1 point-wise Conv layer some Conv layer

C2 (MobileNetV2) Conv layer same above with additional point-wise Conv layer and residual links some Conv layer
C3 (SqueezeNet) Conv layer a Fire layer some Conv layer

W1 (Filter Pruning) Conv layer insignificant filters pruned Conv layer Conv layer

search, since an exhaustive search is unaffordable due to the
exponentially growing search space.

Latency Model. We conduct a series of experiments to
verify that our latency model truthfully reflects the real-world
latency. The estimation model is verified on the smartphone,
TX2 and the server, and the results of which are shown in
Fig. 5. Most of the measured data points fit the model well,
except that the latency of Conv-layers on TX2 and the cloud
do not strictly follow due to the parallel execution of GPU.

A. Implementation Details

We encounter several problems in the practical implemen-
tation of the model tree search. One problem is that the
implemented reinforcement learning algorithm always con-
verges to a local optimal solution, for example, partitioning
at the first few layers despite varying conditions. Besides that,
training from scratch also makes it hard for the reinforcement
learning algorithm to find a good solution. We show our
countermeasures as follows.

Exploration with fair chances: We find the first problem
is mostly because, with randomly initialized parameters, the
output of the partition controller approximately follows a
uniform distribution. But the uniformly distributed output
would result in extremely biased probabilities when exploring
different blocks. For example, if the size of a block is L,
the output of the partition search controller is a L+ 1-length
one-hot vector, with the L+1-th one denoting no partitioning
takes place. Hence the probability for a block to go without
partitioning is 1

L+1 , which is also the chance that the partition
controller chooses to explore the next block. Therefore, a block
at the n-th layer in the tree has ( 1

L+1 )
n−1 chances of being

explored. Hence, the blocks closer to the root are constantly
visited but the ones closer to the leaves are rarely explored,
which makes our RL algorithm highly biased towards a local
optimum in the first few layers.

Our countermeasure is to force the partition controller to
assign a n-th layer block with none-partitioning action with
α · N−nN probability, where α is a decaying factor and reduces
to zero after the first several episodes. In this way, we allow
the controller to explore each block with fair chances, which
facilitate the convergence closer to the global optimum.

Optimal branch boosting: To resolve the second issue,
we utilize the optimal branch model searched under a static
network context. The optimal branch model represents the
local optimum for a branch of the model tree. Hence we use

the solution as an initial state to boost searching on a model
tree. In particular, before composing the model tree, we search
for an optimal branch under each type of bandwidth condition,
and replace corresponding branches of the model tree with
these pre-trained branches. Our algorithm will converge faster
in this way.

Training time: We utilize several techniques to reduce the
training time to 0.5 2 hours with one GPU. First, we use a
latency estimation model instead of measuring on real devices.
Second, we implement a memory pool storing the hash code of
searched models to avoid redundant computations. Third, we
optimize our reinforcement learning controllers with Monte-
Carlo policy gradient method, which is simple and low-cost.

B1 C1A1

B CA Base DNN Model

Optimal Branch Model

BA
Dynamic DNN Surgery

C

Reward 349.51

Reward 348.06

C

A1

B1

C1

C2

B2Model Tree Reward 354.81

Reward 351.95

Reward 349.51

Fig. 8. An illustration of the searching processes by different strategies.

TABLE III
OFFLINE TRAINING REWARD

VGG11
Device Environment Surgery Branch Tree
Phone 4G (weak) indoor 353.57 354.29 355.93
Phone 4G indoor static 358.90 362.06 365.64
Phone 4G indoor slow 354.45 355.94 357.08
Phone 4G outdoor quick 360.43 365.99 368.68
Phone WiFi (weak) indoor 359.75 363.94 365.07
Phone WiFi (weak) outdoor 359.25 363.47 366.53
Phone WiFi outdoor slow 357.88 361.77 363.69
TX2 4G (weak) indoor 335.94 340.54 346.33
TX2 4G indoor static 337.89 343.83 353.13
TX2 WiFi (weak) indoor 343.30 347.31 353.64

Average 352.14 355.92 359.57

AlexNet
Phone 4G indoor static 348.64 358.54 359.77
Phone WiFi (weak) indoor 341.08 356.59 359.96
Phone WiFi (weak) outdoor 354.34 358.02 359.61
Phone WiFi outdoor slow 344.13 357.42 358.89

Average 347.05 357.64 359.56

B. Results

1) Offline Training: Since we care about both latency and
accuracy, we use the expected reward as a general metric to
compare different methods. We train our models and baselines



TABLE IV
EMULATION RESULTS

Result Reward Latency (ms) Accuracy (%)
Model Device Environment Surgery Branch Tree Surgery Branch Tree Surgery Branch Tree

VGG11 Phone 4G (weak) indoor 334.92 346.48 344.21 81.83 61.12 64.96 92.01 91.58 91.59
VGG11 Phone 4G indoor static 335.65 340.35 352.27 80.62 69.72 50.21 92.01 91.09 91.2
VGG11 Phone 4G indoor slow 326.19 345.63 345.76 96.39 60.55 60.42 92.01 90.98 91.01
VGG11 Phone 4G outdoor quick 349.39 354.99 361.36 57.71 57.71 31.86 92.01 89.52 90.24
VGG11 Phone WiFi (weak) indoor 351.85 357.26 358.71 53.62 40.45 38.27 92.01 90.76 90.84
VGG11 Phone WiFi (weak) outdoor 334.66 353.83 354.03 82.27 38.67 38.90 92.01 88.52 88.69
VGG11 Phone WiFi outdoor slow 351.33 356.26 356.57 54.48 44.45 43.96 92.01 91.47 91.47
VGG11 TX2 4G (weak) indoor 326.85 328.82 329.66 95.28 87.25 85.93 92.01 90.58 90.61
VGG11 TX2 4G indoor static 323.31 330.27 332.58 101.18 88.46 84.77 92.01 91.67 91.72
VGG11 TX2 WiFi (weak) indoor 336.36 344.18 343.54 79.43 60.78 61.84 92.01 90.32 90.32

Average on VGG11 337.05 345.81 347.87 78.28 60.91 56.11 92.01 90.65 90.77
AlexNet Phone 4G indoor static 342.68 341.73 343.43 42.47 44.29 41.42 84.08 84.15 84.14
AlexNet Phone WiFi (weak) indoor 348.46 356.87 357.19 32.83 19.43 18.88 84.08 84.26 84.26
AlexNet Phone WiFi (weak) outdoor 346.68 346.58 347.15 35.80 34.97 34.10 84.08 83.78 83.8
AlexNet Phone WiFi outdoor slow 339.50 354.49 354.84 47.77 19.58 19.10 84.08 83.12 83.15

Average on AlexNet 344.33 349.92 350.65 39.72 29.57 28.37 84.08 83.83 83.84

TABLE V
FIELD TEST RESULTS

Result Reward Latency (ms) Accuracy (%)
Model Device Environment Surgery Branch Tree Surgery Branch Tree Surgery Branch Tree

VGG11 Phone 4G (weak) indoor 297.96 319.65 324.87 143.44 104.85 98.58 92.01 91.28 92.01
VGG11 Phone 4G indoor static 339.63 344.40 345.27 73.99 66.03 64.58 92.01 92.01 92.01
VGG11 Phone 4G indoor slow 296.77 304.92 319.89 145.41 131.83 106.89 92.01 92.01 92.01
VGG11 Phone 4G outdoor quick 327.02 335.68 337.78 95.00 65.46 77.07 92.01 87.48 92.01
VGG11 Phone WiFi (weak) indoor 308.19 325.87 322.46 126.38 90.71 96.41 92.01 90.15 90.15
VGG11 Phone WiFi (weak) outdoor 293.21 328.73 333.16 151.36 74.82 84.77 92.01 86.81 92.01
VGG11 Phone WiFi outdoor slow 305.65 312.24 317.93 130.62 116.91 107.41 92.01 91.19 91.19
VGG11 TX2 4G (weak) indoor 272.46 323.66 328.96 185.93 100.60 91.77 92.01 92.01 92.01
VGG11 TX2 4G indoor static 323.73 322.45 323.43 100.49 102.61 100.98 92.01 92.01 92.01
VGG11 TX2 WiFi (weak) indoor 249.94 343.17 347.81 223.47 54.42 46.68 92.01 87.91 87.91

Average on VGG11 301.46 326.08 330.16 137.61 90.82 87.51 92.01 90.29 91.33
AlexNet Phone 4G indoor static 351.15 353.12 353.73 28.35 25.06 25.91 84.08 84.08 84.64
AlexNet Phone WiFi (weak) indoor 257.74 325.12 329.70 184.04 73.17 64.10 84.08 84.519 84.08
AlexNet Phone WiFi (weak) outdoor 254.43 265.29 294.71 189.55 171.46 114.22 84.08 84.08 81.62
AlexNet Phone WiFi outdoor slow 277.76 337.07 327.07 150.67 46.85 63.52 84.08 82.59 82.59

Average on AlexNet 285.27 320.15 326.30 138.15 79.14 66.94 84.08 83.82 83.23

within different real-world network contexts. Fig. 7 shows the
model tree search process of our reinforcement learning-based
method, random search, and ε-greedy search. The context is a
4G indoor environment where the device remains static. The
maximum reward our reinforcement learning method finds is
367.70, which is higher than 358.77 found by random search
and 358.90 found by ε-greedy search.

The complete training results are shown in Table 3. We
trained the decision engine under abundant contexts from 4G
to WiFi, with weak or normal signals, and we even include
three mobility patterns: static, slow, and quick. We also provide
results of the optimal branch search, which are obviously
inferior to optimal tree search, but superior to dynamic DNN
surgery. Above all, our method outperforms the baseline.

Here we present a concrete example to show how our
method can improve the performance through adaptation to
network condition fluctuation. Fig. 8 compares the results of
different methods under the environment of ‘4G indoor static.’

While dynamic DNN surgery provides an optimal partition
with a reward of 348.06, the optimal branch search explores
the edge-cloud deployment as well as the DNN architecture
transformation and thus obtains a higher reward. In our model
tree, with the branch boosting technique, branch A1−B1−C1
of the model tree reaches the same reward as that of the
optimal branch search, guaranteeing the model tree performs at
least as well as the optimal branch search. Beyond that, other
branches A1−B1−C2 and A1−B2−C take full advantage
of network condition’s resurgence and achieve better rewards.
Overall, the model tree gains the highest reward.

2) Emulation: We run emulation tests with real-world
network condition traces and estimated latencies. We show
the reward, latency and accuracy of each method in Table 4,
which illustrates the trade-off between the accuracy loss and
latency reduction. Specifically, in tests with VGG11, the model
trades 1.35% accuracy loss for 28.32% latency reduction com-
pared with dynamic DNN surgery, and gains 7.88% latency



reduction as well as slight accuracy increase compared with
the optimal branch search. As for AlexNet, the model tree
reduces 34.33% time consumption with almost no accuracy
loss compared with the dynamic surgery, and also 4.06% faster
than the optimal branch search. Again, the model tree achieves
the highest reward in almost all cases.

3) Field Test: We conduct field tests to examine the real-
world performance of our algorithms, and the result is shown
in Table 5. The gap between field test results and emulation
results comes from the inaccuracy of our latency model and a
coarse estimation of network conditions. Despite the gap, our
algorithm still shows its superiority in almost all scenarios.

For VGG11, the model tree reduces 36.40% latency with
0.74% accuracy loss compared with dynamic surgery. Its infer-
ence speed improves by 3.65% and its accuracy increases by
1.16% compared with the optimal branch search. For AlexNet,
the model tree reduces 51.55% and 15.42% inference latency
respectively in comparison while keeping both accuracy losses
around 1%. However, in cases when the network is good and
stable, our algorithm does not have that much advantage over
baselines as it is designed for dynamic network conditions
after all. For example, in the 4G indoor static case, our method
performs equally well with the baseline for VGG11 on TX2.

VIII. CONCLUSION

To close the gap between the limited computational resource
on edge devices and the stringent latency requirement, we
present a reinforcement learning-based decision engine to
search for a proper DNN configuration with the awareness
of runtime context. By taking advantage of the hybrid edge-
cloud deployment and flexible DNN architectures, our RL-
based decision engine generates a model tree in the offline
stage. In the online stage, we dynamically grow a DNN
model from the model tree in response to the fluctuating
contexts. Evaluation results in real-world contexts reveal that
our method provides a favorable trade-off between latency and
accuracy — a 30%−50% latency reduction at the cost of 1%
accuracy loss — which is significantly beyond the baselines.
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