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Abstract—With the success of pre-trained large language models in various tasks, users, individuals and enterprises alike, may need
to fine-tune these models with their own datasets. Split learning was proposed to divide the model and place a portion on each user’s
own device, and intermediate results in each iteration of training will be sent to the server to complete the forward pass. There were
concerns in the literature about whether private data can be leaked by sending such intermediate results from the training process. In
this paper, we conduct empirical studies on typical large language models, such as GPT-2, OPT, Llama, and Qwen, to show that in
most situations, an honest-but-curious server is not able to reconstruct private data using such intermediate results. To find out the
reason why large language models preserve data privacy better in these situations, we present our theoretical analyses on these
empirical observations. In one special case, where a state-of-the-art existing attack can reconstruct data in the first iteration, we show
that it can be easily defended with a simple but effective solution leveraging publicly accessible data.
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1 INTRODUCTION

LARGE Language Models (LLMs) demonstrate excep-
tional proficiency in a spectrum of natural language

tasks, encompassing text generation and question answer-
ing. Users can directly interact with these models by feeding
their questions, paragraphs or even entire books as inputs.
There have been public releases of pre-trained LLMs such as
OpenChat [1], Llama [2], Falcon [3], and Qwen [4] offering
alternatives to production LLMs like ChatGPT and Google
BARD. These models empower users to tailor their own
language models with their local data through fine-tuning.

To fine-tune a customized language model, however,
users may not be willing to upload their local data to a
public server because of privacy concerns. On the other
hand, users cannot fine-tune such large models completely
on the client device, for the sake of preserving data privacy.
For example, fine-tuning a Llama 2 model with 7 billion
parameters requires 28 GB of GPU memory, which exceeds
the memory capacity of most client devices.

Split learning [5] (SL) is a feasible distributed training
paradigm for fine-tuning such large models. The clients
only need to train the first few portion of layers with their
local data, and transmit the intermediate results to the public
server. The server then sequentially sends the gradients back
to the clients after the forward pass and back-propagation.
However, it is pointed out in the recent literature that SL can
be vulnerable to adversarial attacks and the intermediate
results have the potential to leak private data [6]–[9].

To leverage split learning for fine-tuning LLMs, we
will first understand whether such a risk of privacy leak-
age exists. We develop a system for simulation based on
PLATO [10], wherein clients and the server operate in dis-
tinct processes or devices. In such a way, the server only
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has access to the intermediate features during training and
can reconstruct the private data only on the data it receives.
With such a design, we have a thorough analysis to validate
the assumptions inherent in prior research and verify the
effectiveness of the attacks with proper assumptions.

With our empirical study, though attacking methods,
such as UnSplit [9], can achieve good attacking results in the
task of image classification and ECG classification [11], they
exhibited limited effectiveness on the task of text generation
using large language models. We begin with GPT-2 models
and do a series of experiments over different models includ-
ing GPT, OPT, Qwen, and Llama. We find UnSplit works
only in a special case where we do split learning with GPT-2
and place one transformer layer on the clients, the server can
reconstruct private data in the first iteration. After the first
iteration, no matter what language model is used or how
many layers are placed on the clients, the UnSplit attacks
are all ineffective. In the first iteration, placing more layers
on the clients can also make the attacks ineffective.

In summary, our experimental findings yield three key
takeaways. First, the effectiveness of UnSplit is inversely
proportional to the number of model parameters and layers
placed on the clients; specifically, a client model with more
parameters and layers makes UnSplit less likely to succeed.
Second, after iteration one, if the client model has more
trainable parameters, the UnSplit attack is less likely to
be effective. Third, notably, after the first iteration, UnSplit
proves ineffective when applied to language models, no
matter we fine-tune the whole model or fine-tune fewer
parameters with LoRA [12] method.

To understand the reasons behind the ineffectiveness
of previous successful attacks on large language models,
we present our theoretical analyses over empirical studies,
across various aspects including models, data, and features.
We explain that the presence of some layers, such as dropout
layers and layer normalization layers, which are widely
used in language models constitutes a critical factor. The
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Fig. 1: The deployment of language model across the clients
and the server in split learning.

model scale of language models is also larger, contributing
to another factor. In terms of data, text data has a larger
dimension and is harder to reconstruct. To substantiate these
findings, we visualize the similarity between input and
output features at each layer in language models, which is
much smaller compared to convolutional neural networks.

In addressing the special cases where the UnSplit attack
is effective, we propose a simple yet helpful solution. We just
need to let the clients fine-tune with public data in the first
iteration during split learning. With the abundant empirical
study and analysis of the properties of language models and
text data, we conclude that split learning can preserve data
privacy when fine-tuning large language models.

2 BACKGROUND AND RELATE WORK

2.1 Large Language Model
Large language models (LLMs) represent a category of
models primarily built on transformers, and are trained
on massive amounts of text data to learn the patterns of
natural language. We have seen notable advancements in
production level LLMs, such as GPT-4 and public releases
of these pre-trained LLMs [1]–[3], [13]. Open Pre-trained
Transformers (OPT) [13] is a collection of models trying to
match the performance of GPT-3. Llama 2 [2] is a collection
of pre-trained and fine-tuned large language models rang-
ing from 7 billion to 70 billion parameters. Llama 3 is a more
advanced version of Llama2, ranging from 8 billion to 70 bil-
lion parameters. OpenChat [1] is a collection of open-source
language models trying to match the performance of GPT-4.
Qwen [4] is is a language model series including decoder
language models of different model sizes from 0.5B to 72B.
Large language models usually have a lot of parameters and
are trained on large amounts of data with supervised fine-
tuning and reinforcement learning fine-tuning. As a result,
users can fine-tune the large-scale, pre-trained language
model to diverse downstream applications [12].

Fine-tuning large language models involves various
methodologies. One is fine-tuning the whole pre-trained
model. The entire model, including its pre-trained weights,
is subjected to further training. Another is to use the low-
rank adaption [12], [14] (LoRA). Conversely, it maintains the
frozen state of the original model weights. Low-rank decom-
position matrices are introduced into the model and trained
alongside the model updates. The trainable parameters will
be greatly reduced and the GPU memory can be saved.
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Fig. 2: The structure of a typical transformer block (with
LoRA fine-tuning method).

The typical structure of a large language model is de-
picted in Fig. 1. We input token indicies into the model,
where a token id corresponds to the index of a token in a
specific lookup table. The first layer is an embedding layer
to convert token id into embedding features. The second
layer is a position embedding layer. The final layers will
be a final layer normalization layer and a language model
head layer, such as a linear layer in text generation and text
classification. The remaining part is composed of several
transformer blocks.

The structure of a transformer block, as illustrated in
Fig. 2, includes attention layers and Multilayer Perceptron
(MLP) layers. To optimize the efficiency of these layers, the
Low-Rank Adaption (LoRA) method can be applied. This
involves freezing the weights of attention layers and MLPs,
updating only the weights of LoRA layers. The intermediate
features are then computed as the sum of the outputs from
LoRA layers and the original attention layers or MLPs.

2.2 Split Learning

To fine-tune LLMs on local data, there are different decen-
tralized training paradigms. In federated learning [15], each
client trains a model locally and a server will collect the
weights of these models and aggregate them to a global
model. LoRA [12], freezes the pre-trained model weights
and injects trainable rank decomposition matrices into each
layer of a transformer, greatly reducing the number of
trainable parameters of a model. However, given the sub-
stantial parameter count in large models, clients often face
challenges locally fine-tuning the entire model or utilizing
LoRA. For instance, fine-tuning a Llama 2 model [2] with 7
billion parameters necessitates over 8 NVIDIA A100 80GB
GPUs. Even with LoRA, the process still demands over
28GB of GPU memory or 10GB with QLoRA.

Split learning [5] (SL) offers a decentralized training
paradigm where only the initial layers of the model are
placed on the client side, while the remaining layers reside
on the server. The client trains the network up to the parti-
tion layer and sends the intermediate features to the server.
Upon receiving the features, the server takes over training
the remaining layers and completes forward propagation.
During the backward propagation, the server will first con-
duct backward propagation till to the partition point and
send back the gradients of the partition layers to the client.
The client will update the local parameters by conducting
backward propagation with the received gradients.

To deploy a language model in split learning, as shown
in Fig. 1, we place the first several layers including the token
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embedding layer, the position embedding layer and the first
a few transformer layers on the clients. In order to preserve
the privacy of local data, we also need to keep the labels on
the clients. The reason is that for the task of text generation,
the labels are generated by shifting one word of the inputs.
As a result, we place the last several layers on the clients.

2.3 Privacy Leakage in Split Learning

Though split learning can bring benefits to decentralized
training, existing literature points out that there can be
potential privacy leakage through the intermediate features.
He et.al. [16] proposed a query-based attack to let the
server send some specific designed inputs to the clients
and observe the patterns of corresponding intermediate
features. Zhang et.al. [17] assumes that the server knows
the model weights of the client models and conducts a
white-box attack. In PatchShuffling [7], DataMix [8], and
Shuffled Transformer [18], [19], they assume the server have
a public dataset, which has the similar distribution as the
private datasets. And then they train an inverse-network to
reconstruct private data from intermediate features on the
public dataset. Language Model Inversion [20] requires to
train the inverse-network on the same instruction dataset
on text data.UnSplit [9] constructed a randomized guessed
client model on the server and a randomized guessed inputs
first. They then iteratively updated the guessed inputs and
the weights of the guessed model through gradient descent.
The gradient descent is based on the mean square error
between intermediate features and the outputs generated
on the server. Finally the converged guessed inputs will be
the private data trying to reconstruct.

Label leakage [21] assumed that the labels contain the
private information and inference the private label through
observing the distribution of the backwarding gradients.
However, such an attack is only applicable for binary clas-
sification tasks in split learning. Inference attack [22] steals
private data by sending attacker-designed gradients to fool
client models into sending features that the attacker uses
to reconstruct private data. While this attack strategy may
succeed in extracting information, it comes at the cost of
degrading the performance of the trained model. Conse-
quently, the impact on model performance makes this type
of attack easier to detect, thus limiting its effectiveness.

To the best of our knowledge, the majority of existing re-
search has primarily focused on reconstructing private data
in scenarios related to image classification, convolutional
neural networks, or simple language models. PatchShuf-
fling [7] also studied the privacy in terms of tabular data
in recommendation system. Sharif et.al. [11] studied the
privacy of split learning in terms of ECG classification with
1D CNN. We are the first to try to study whether the risk
of privacy leakage exists in terms of split learning over text
generation with large language models.

3 ATTACKS TOWARDS LLMS IN SPLIT LEARNING

3.1 Threat Modeling

We first give a definition of the threat model in practical
cases. We assume the server is honest but curious. The
server will send the correct back-warding gradients to the

clients. But at the same time, it will try to reconstruct private
data using the received intermediate features. The server
can run the reconstruction process in the background so that
clients will not notice the attacks. The server does not know
the updated weights of the client models during training.
On the other hand, it does know the pre-trained weights of
the client models before SL gets started because pre-trained
weights are usually publicly available on the Internet. Under
such a threat model, the server only knows two contents:
the transmitted intermediate features and the pre-trained
weights of the client models before the training gets started.

3.2 Possible Attacks
3.2.1 Query-Based Attacks
In previous literature, one kind of attack is query-based
attacks. Such an attack needs the server to send specific
designed data or manipulated gradients to clients so that the
server guides them to leak private information. However,
as the gradients or intermediate features deviate greatly
from their correct values, the performance of the fine-tuned
model will be affected, which is easy to be noticed by the
clients. Hence, we can easily detect such attacks and do not
focus on this kind of attack in this paper.

3.2.2 Inverse Network Based Attacks
Another kind of attack first trains an inverse-network and
then uses it to take the intermediate features as the input
and outputs the private data. However, since private data
are kept locally, the server does not know any prerequisite
information about local data and thus will not be able to
train an inverse network on a dataset which is similar to a
private dataset. On text data [20], the attacker needs to know
the private instruction dataset. However, if it already knows
the contents similar to the private dataset, the privacy has
been leaked. There is no need to conduct the attacks.

3.2.3 UnSplit Attack
As a result, due to these reasons, in this paper, we do not
consider query-based attacks and the attacks that need to
train an inverse network. The assumptions of these attacks
are not valid in the actual scenarios. We will focus on
whether UnSplit-like attacks are effective for LLMs.

The initial UnSplit is designed to recover the private
images on local clients in image classification tasks. They
randomly initialized a copy of the client model on the server,
which we call it a guessed client model, notating it as M ,
and a training sample, notating it as x. The weights of the
guessed client model is θ. After the UnSplit attack finishes,
it took the converged training samples as the wanted recon-
struction of private data. In each split learning iteration, af-
ter receiving the intermediate features, notating it as ĥ here,
the server inputs the training sample into the guessed client
model and gets the output. So, the servers first does several
inner iterations to update the x with ∇xLMSE(Mθ(x), ĥ).
The server next does several inner iterations to update the θ
with ∇θLMSE(Mθ(x), ĥ). These two steps are repeated for
several outer iterations until convergence.

The private data are tokens or token ids for the task of
text generation. In the original UnSplit, we need to calculate
the gradients over x and θ. However, first, token ids are
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Algorithm 1 UnSplit attack over LLMs

1: Output: reconstructed token ids.
2: Server receives intermediate features ĥ.
3: Server sets θ the same as pre-trained weights and initial-

izes x′ randomly. The guessed client model M has the
same structure as the client models.

4: for outer loop do
5: for inner loop do
6: optimize x′ with ∇x′LMSE(Mθ(x

′), ĥ).
7: end for
8: for inner loop do
9: optimize θ with ∇θLMSE(Mθ(x

′), ĥ).
10: end for
11: θe ← extract weights of the embedding layers.
12: Token ids← {j|argmin∥θej − x′i∥2,∀x′

i ∈ x′}.
13: end for

discrete variables in the space of integers, not continuous
variables in the image space. We are not able to calculate
their gradients. Second, for the language model, the em-
bedding layers will not propagate gradients over x. Hence,
the original UnSplit does not work on the language model
as we are not able to calculate ∇x and update x. Another
difference for fine-tuning language model is that the server
does not need to randomize the θ but use the weights from
the pre-trained models.

After investigating the structure of language models,
we propose an improved UnSplit attack specific to text
generation tasks with language models. Since the word
embedding layer cannot propagate gradients over x′, we
first reconstruct the output of the word embedding layers.
We do the UnSplit attack with available ĥ until convergence
and get the reconstructed embedding features x′. Next, we
take out the weights of the word embedding layers from
the pre-trained model on the server. For each embedding
feature x′, we calculate the Euclidean distance between it
and each embedding vector in the weights and find the one
with the minimal distance. The corresponding index of that
embedding vector will be the token id we want to get. The
whole process is shown in Algorithm 1 and in such a way,
we can still do UnSplit attack over language models.

3.3 Attacking Results
3.3.1 Experimental Settings
For fine-tuning the whole model and with LoRA, we used
the AdamW optimizer with a learning rate of 5× 10−6, and
2× 10−4 respectively. For the Unsplit attack, the number of
outer and inner iterations is 100. We update x′ using Adam
optimizer with a learning rate of 0.1 and θ using AdamW
optimizer with a learning rate of 0.001. The batch size is
set as 4. Before forwarding the inputs into a model, we use
the corresponding tokenizer of each model to convert the
tokens into token indices.

We use three datasets for fine-tuning. The first one is
WikiText103 [23], which contains over 100 million tokens
extracted from the set of verified good and featured articles
on Wikipedia. Given that WikiText103 has been extensively
used in the pretraining of some LLMs such as OPT and
OpenChat, we have chosen two additional private datasets

Original data millimeter ( 0 @.@ 8 in ) Oerlikon light AA
guns on single mounts. In addition Caradoc
was fitted with a Type 271 and Type 290

Accuracy(%) Reconstructed data

2.95 Pillopolis medi wrestling Am Overt Jeff num
par sl Med Inf Hey ev Fre Kem M Jehovah
Solomon Gleyx SpaceEngineers minim Ke

11.69 device idea h 0 @cm@ 8 onappend Oerlikon
light AA guns There single what Lee I ad-
dition Caradoc proved fittedak HiddenType
271

43.55 by some 2 0 that that 8 that< |endoftext| ><
|endoftext| > that 33 that light AA guns that
single mount< |endoftext| >< |

82.57 byiece / 0 @ It@ 8 that, Oerlikon light AA
guns on single mounts. In addition Caradoc
was fitted at a Type 271 and Type290 surf

TABLE 1: The example of the reconstructed data and the
original data under different attacking accuracy.

not utilized in existing LLM training processes. TextGenera-
tor mini 4 dataset [24] contains over 37,000 rows of data not
included in major text generation datasets. Another dataset
is the Enron Aslec Emails dataset [25]. It is a comprehensive
collection of email communications within the Enron Cor-
poration, comprising approximately 500,000+ emails from
around 150 employees. Typically, as LLMs are not used to
generate email addresses, we use such datasets solely to
verify the effectiveness of attacks.

To evaluate the effectiveness to the attacks, we use the
accuracy between origin token ids and reconstructed ids
and the ROUGE [26]. ROUGE score ranges from 0 to 1, with
higher values indicating better summary quality. ROUGE-1
measures the overlap of single words and ROUGE-2 mea-
sures the overlap of two-words between two text samples.
ROUGE-L measures the longest common sequence between
two texts. It can measure semantic similarity as it finds
the longest common sequence regardless of word order.
ROUGE-Lsum splits the text into multiple sentences and
sums the ROUGE-L of each sentence. In our evaluation, we
did not differentiate between upper and lower cases.

To clearly illustrate these metrics, we present examples
of both reconstructed and original data from WikiText-103
at various levels of attack accuracy in Table 1. Each sample
contains over 5000 characters; thus, we display only the first
128 characters for demonstration purposes.

3.3.2 Implementation
We implement the process of fine-tuning large language
models with split learning in PLATO [10] and PYTORCH.
We use the implementation the LoRA method provided in
PEFT. We download pre-trained models and datasets from
HUGGINGFACE. We use the tokenizer corresponding to each
model. The maximum length of each tokenizer embedding
block is set to 1024. Our experiments are done on the
NVIDIA A4500 20GB GPUs, NVIDIA A100 40GB GPUs, and
Apple Mac M1 Pro 16GB.

3.3.3 Iteration 1
We first consider the situation that the server tries to re-
construct private data at iteration one. At iteration one, the
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TABLE 2: The effectiveness of improved UnSplit attack in the first and second iteration during split learning, on WikiText-
103. Number of parameters are counted in millions. Acc, R1 F1, R2 F1, RL F1, and RL sum F1 represent Accuracy, ROUGE-1
F1, ROUGE-2 F1, ROUGE-L F1, and ROUGE-L sum F1 respectively.

First iteration Second iteration

# Param Acc% R1 F1% R2 F1% RL F1% RL sum F1% Acc% R1 F1% R2 F1% RL F1% RL sum F1%

GPT-2 46.5 82.57 86.38 61.96 78.90 86.18 0.415 0.941 0.761 0.602 0.836
OPT 157.6 43.55 41.54 16.61 38.49 40.35 2.95 4.99 3.02 3.60 4.88

OpenChat 3.5 349.2 29.13 28.82 8.73 26.69 28.14 0.0 0.09 0.11 0.077 0.121
Qwen 1.5 361.8 11.72 16.92 9.04 13.54 16.92 1.17 0.17 0.0 0.14 0.17
Llama 2 333.6 36.08 45.79 31.98 45.79 45.73 0.879 1.01 0.0 0.864 1.01
Llama 3 743.6 19.82 25.57 10.46 23.23 25.25 0.12 0.348 0.0 0.349 0.349

TABLE 3: The effectiveness of improved UnSplit attack at the second iteration during split learning, on WikiText-103. The
models are fine-tuned with the LoRA method. Number of parameters are counted in thousands.

# Parameters Accuracy % ROUGE-1 F1% ROUGE-2 F1% ROUGE-L F1% ROUGE-L sum F1%

GPT-2 24.6 11.69 10.09 0.98 7.04 6.88
OPT 65.5 1.95 7.42 1.02 5.92 7.15

Qwen 1.5 312.3 0.85 0.21 0.11 0.17 0.21
Llama 2 131.1 6.74 6.29 4.87 11.32 6.26
Llama 3 106.50 0.20 3.25 3.73 2.o1 3.25

model weights of the client model have not been updated,
which are known to the server. With the beginning of the ex-
periments, we first place only the first transformer layer on
the clients and the remaining layers on the server. With the
improved UnSplit attack, we begin an experiment using the
GPT-2 model. As shown in Table 2, the server can success-
fully reconstruct private data. Hence, we further test over
other larger language models with the same setting. The
OPT [13] and OpenChat 3.5 [1] have similar performance
to GPT-3 and GPT-4 respectively. Llama [2] and Qwen [4]
are two latest widely used larger language models. In our
experiments, we choose the Llama –7B, Llama 3–8B, and
Qwen 1.5–1.8B. It shows that with the number of parameters
increasing, the effectiveness of the attack decreases. With
such an observation, we would like to figure out in which
situations the attack is effective in the first iteration.

Attack effectiveness along number of layers on clients.
First, we investigate whether the total number of parameters
in the model is a determining factor. We repeat the exper-
iments but place additional layers on the clients, thereby
increasing the number of parameters there. As shown in
Fig. 3, UnSplit no longer functions effectively as more layers
are added. Interestingly, when we place four transformer
layers from GPT-2 on the clients, resulting in 68 million
parameters, the UnSplit attack already becomes ineffective.
For the larger OPT model, as the number of parameters on
the clients increases, the UnSplit attack also fails to retrieve
the correct private data.

Takeaway 3.1. We can draw the conclusion that at iteration 1,
if the client model has more model parameters, and more layers
placed on the clients, the UnSplit is less likely to be effective.

3.3.4 Iteration > 1
At iteration 1, the client models have not been fine-tuned.
We study the effectiveness of attacks after the client model
is fine-tuned for one iteration. The attacking results over the
GPT-2 model in the second iteration are shown in Table 2,
where we see that with just one iteration of updating the
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Fig. 3: The attacking results of UnSplit over GPT-2 and OPT
with placing different number of transformer layers on the
clients, in the first iteration.
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Fig. 5: Parameters and train-
able parameters when fine-
tuning OPT with LoRA and
placing different layers on
clients.

client model, it is surprising that the UnSplit attack no
longer works. Besides the GPT-2 model, for the other lan-
guage model, UnSplit does not work either. To investigate
further, we conduct an experiment with the GPT-2 model.
We use the UnSplit attack at different iterations and from
Fig. 4, except for the first iteration, which we have already
discussed, UnSplit is not effective from the second iteration
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TABLE 4: The effectiveness of improved UnSplit attack at the second iteration during split learning on different dataset.
Acc, R1 F1, R2 F1, RL F1, and RL sum F1 represent Accuracy, ROUGE-1 F1, ROUGE-2 F1, ROUGE-L F1, and ROUGE-L
sum F1 respectively.

TextGenerator mini 4 Enron Aslec Emails

Acc% R1 F1% R2 F1% RL F1% RL sum F1% Acc% R1 F1% R2 F1% RL F1% RL sum F1%

GPT-2 8.47 0.775 0.0 0.646 0.646 23.83 11.52 1.44 9.94 10.40
OPT 5.18 9.18 0.168 4.45 5.29 0.0 0.44 0.0 0.33 0.38

OpenChat 3.5 0.656 0.703 0.0 0.663 0.584 2.05 2.16 0.0 1.44 2.16
Qwen 1.5 5.37 2.82 3.52 2.53 2.53 3.32 1.93 0.0 1.66 1.66
Llama 2 0.879 1.01 0.0 0.864 1. 01 4.69 0.536 0.0 0.536 0.536
Llama 3 3.91 12.37 4.25 11.20 10.02 2.52 2.39 5.17 2.24 2.24
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Fig. 6: The attacking results over different models with plac-
ing the first transformer layer on the clients, in the second
iteration, setting different attacking hyper parameters.

even with the smallest GPT-2 model.
Attack effectiveness along number of trainable param-

eters. We next study whether the number of the trainable
parameters is the factor of the effectiveness of UnSplit.
Different from the first iteration, where the model is not
fine-tuned, the weights of the client models are updated. We
can also fine-tune the model with the LoRA method which
makes the model have much fewer trainable parameters.
The trainable parameters decrease directly from the million
scale into the thousand scale. It is intuitive that with fewer
trainable parameters, it is easier to recover the weights of
the guessed client models as there are fewer parameters
to recover. For example, as shown in Fig. 5, the trainable
parameters in OPT are much fewer than all parameters, with
having different number of transformer layers placed on
the clients. We can see from the Table 3, though with fewer
trainable parameters, the UnSplit attack can achieve higher
attack accuracy and ROUGE score, it fails to effectively
reconstruct the private data. The attacking accuracy and
ROUGE score is around or above 10%, not able to reveal
privacy of local data.

Takeaway 3.2. At iteration after iteration 1, if the client model
has more model parameters, more trainable parameters and more
layers placed on the clients, the UnSplit is less likely to be effective.

To verify our discovery, we further conducted the exper-
iments with different hyper-parameters and used different
datasets as the private datasets. We revisit the experiments

by placing a first layer on the clients and using the text-
generator dataset. As we can see from the Table 4, though
the text-generator and eron-emails have simpler contents
comparing to the WikiText-103, the Unsplit attack is still not
effective to successfully reconstruct the private data.

3.3.5 Impacts of UnSplit Hyper-Parameters
We further investigate that whether the setting of hyper-
parameters, including learning rate of updating θ and x′

will have effects on the effectiveness. Hence, we repeat
the previous experiments using different hyper-parameters.
Apart from our default setting, we also set the learning
rate of updating x′ as 0.01 and set the learning rate of
updating θ as 1 × 10−4. As we can see from Fig. 6, it is
noteworthy that the effectiveness remains consistently low
across different configurations, as measured by accuracy
and ROGUE scores. Thus, the observed results suggest that
variations in hyper-parameter values do not significantly
impact the efficacy of the UnSplit attack.

Takeaway 3.3. At iteration after iteration 1, the UnSplit attack
is not effective enough to reconstruct private data even if we place
only the first transformer layer on the clients.

4 ANALYSIS OVER ATTACKING RESULTS

A naturally raised question is why the UnSplit attack is not
as effective as it was in image classification tasks and ECG
data classification tasks. A common observation is that if we
place more layers on the clients, it is more possible for the
UnSplit to fail to attack, in all cases. However, for image
classification with CNNs and vision image transformers,
and ECG data classification with 1D CNNs, even after
iteration 1, they can reconstruct the original data. Conse-
quently, it becomes imperative to investigate the distinctive
characteristics of text generation tasks and language models.
In this section, we will deliberately construct some special
cases which are not real in actual applications, to make the
UnSplit attack work. These constructed scenarios help us
gain insights into the underlying reasons for the effective-
ness of such attacks.

4.1 Model Difference
4.1.1 Special Layers
An important factor leading to the unsuccessful attack after
iteration one is that the training modes on the clients and
the server are set different. On the clients, the models are all
set in the mode of training. For the guessed client model on
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Fig. 7: The attacking results over GPT-2 with placing differ-
ent number of transformer layers on the clients, in the first
and second iteration when dropout layers are disabled.
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Fig. 8: The attacking results over OPT with placing different
number of transformer layers on the clients, in the first and
second iteration when dropout layers are disabled.

the server, it can be set either in the mode of training or the
mode of evaluation. Importantly, when set in training mode,
certain layers such as layer normalization [27] and dropout
layer [28] introduce variability in outputs for identical in-
puts across different runs. It is noteworthy that the model
described in the original UnSplit paper lacks normalization
layers and dropout layers. However, these components play
critical roles in the architecture of large language models.
We will next analyze these layers in more detail.

The dropout layer serves as a technique employed to
address overfitting in neural networks. During the training
process, it selectively zeroes out certain elements within
the output of the preceding layer prior to the dropout
layer, utilizing a probability denoted as p. We also call p
as dropout rate. After that, we scale the output with 1

1−p .
During training, dropout layers introduce randomness. By
randomly zeroing out elements, outputs for identical inputs
vary across runs. Additionally, the zeroing-out operation
does not facilitate gradient propagation. The gradients as-
sociated with elements set to zero are nullified.

In large language models, as the parameters are often of
million and billion scale, dropout is an indispensable tool for
mitigating over fitting. As shown in the Fig. 2, we usually
have an attention dropout after the attention layers and an
MLP dropout after the MLP layer. If we fine-tune the model
with the LoRA method, there is usually an LoRA dropout
layer. Besides that, there is usually a dropout layer after
the position embedding layer and a dropout layer after the
language model head, which is a linear layer.

We initiate a comparative analysis to assess the impact
of omitting dropout in the first iteration. We repeat the
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Fig. 9: The attacking results of UnSplit over GPT-2 with plac-
ing different number of transformer layers on the clients, in
the second iteration and fine-tune with LoRA method. The
LoRA dropout layers are disabled and the other dropout
layers are disabled respectively in two cases.

previous experiments, but set the dropout rate of all dropout
layers to zero. We can see from the Fig. 7a and Fig. 8a
that with setting drop out rate as zero, there is not much
improvement in the attacking performance. We then repeat
the experiments at iteration 2 with fine-tuning the whole
model and setting the dropout rate to zero. It is interesting
that the attacking accuracy increases to over 80% on GPT2.
On OPT, the attacking accuracy also increases to over 50%.
As shown in the Fig. 7b and Fig. 8b, the UnSplit attack
becomes effective again when dropout rate is zero and the
attacking accuracy is even higher than in the first iteration.

The conclusion that with more layers placed on client
models, it is harder for an UnSplit attack to work still holds,
even if we disable the dropout layers. From the observation
of iteration 1 and iteration 2, we can find that the random-
ness introduced by dropout layers will affect the recovery of
the guessed client models. It is hard for the server to recover
the weights of the models on the clients and it leads to the
result that we cannot reconstruct the original private data.

As we can also fine-tune the model with the LoRA
method, we further study whether the usage of the LoRA
dropout layer will affect the UnSplit attack. In a real appli-
cation, we need to use both the LoRA dropout and other
dropout layers. We here consider two cases: only LoRA
dropout layers are used and only other dropout layers are
used. Regarding the GPT-2 model, from Fig. 9, we can
see that comparing to Fig. 7b, both dropout in original
transformers and LoRA dropout have impacts on the effec-
tiveness of attacks. If the LoRA drop out rate is set to zero,
the attacking accuracy will increase.

Regarding the OPT model, if we fine-tune with the LoRA
method and set the LoRA dropout to 0. From Fig. 10, we
can see that with larger models, the dropout layers in the
original model plays a more critical factor. We can see that
when we use dropout only in LoRA layers, the attacking
accuracy is much higher because of fewer trainable param-
eters, exceeding the accuracy when fine-tuning the whole
model. We can conclude that the widely used dropout layers
in transformers are a factor in making UnSplit less effective.

Layer normalization is a technique widely used in
transformer structured model including language models
and vision image transformers [29]. Different from batch
normalization, which is widely used in convolutional neural
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Fig. 10: The attacking results of UnSplit over OPT with plac-
ing different number of transformer layers on the clients, in
the second iteration and fine-tune with LoRA method. The
LoRA dropout layers are disabled and the other dropout
layers are disabled respectively in two cases.
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(b) Fine-tune with LoRA

Fig. 11: The attacking results of UnSplit over GPT-2 with
placing different number of transformer layers on the
clients, in the second iteration during studying the impacts
of layer normalization layers.

networks, layer normalization does normalization on a scale
of samples. The formulation of layer normalization is

f(x) =
x− E[x]√
V ar[x] + ϵ

∗ γ + β (1)

In the formulation, ϵ is a constant to avoid zero being
denominator; γ and β are two parameters. E[x] and V ar[x]
represent the expectation and variance during the training.
During the training, layer normalization layers will update
E[x] and V ar[x] with training samples. However, as the
guessed client model on the server does not know about
training samples, it will have different E[x] and V ar[x] as
the client models. The calculation of E[x] and V ar[x] is not
through updates by gradients but direct calculation over
training samples passed through layer normalization layer.
As a result, the outputs of layer normalization layers will
be different among the between the client models and the
guessed client models even if they have the same weights.

There is another difference between layer normalization
and batch normalization. In batch normalization, γ and β
are scalars, which are the same for all elements in the inputs.
While in the layer normalization, they are element wise
parameter. So there are more parameters for the server to
infer the weights in the client models.

To investigate the impacts of layer normalization with-
out affecting the output distribution, layer normalization
layers are not removed directly. Removing them would pre-
vent generating the correct intermediate features. Instead,

1 2
Cut layer

0

20

40

60

80

Ev
alu

at
ion

 sc
or

e (
%

)

Acc
R1 F1
R2 F1
RL F1
RLsum F1

(a) Fine-tune whole model

1 2
Cut layer

0
2
4
6
8

10
12

Ev
alu

at
ion

 sc
or

e (
%

)

Acc
R1 F1
R2 F1
RL F1
RLsum F1

(b) Fine-tune with LoRA

Fig. 12: The attacking results of UnSplit over OPT with
varying numbers of transformer layers on the clients in the
second iteration, studying the impacts of layer normaliza-
tion layers. We fine-tuned the model or used LoRA.

we let the guessed client model process the same private
data in the first iteration as the client model. This ensures
the guessed client model has the same E[x] and V ar[x] as
the client model. We see from Fig. 11 and Fig. 12 that when
we fine-tune the whole model, if E[x] and V ar[x] are known
to the server, the UnSplit attack works. An interesting ob-
servation is that fine-tuning with the LoRA method keeps
accuracy low but higher than in Table 3. Hence, we conclude
that layer normalization is another factor that makes the
UnSplit attack less effective. Additionally, we see that the
LoRA layers also play critical roles in determining whether
the UnSplit attack can be effective. With the LoRA method,
whether UnSplit works depends not only on the original
model but also on the LoRA layers.

4.1.2 Model Scale
Model scale is another important factor as discussed in the
takeaways. To broaden the conclusion, we investigate the
number of parameters in CNNs. The model used in the
original UnSplit paper has only 1.61 million parameters, and
one layer has 1792 parameters. The ResNet152 model has
58.16 million parameters, similar to one transformer layer
of GPT-2. One layer of a ResNet152 model has only 75K
parameters. The scale of CNN models is much smaller than
that of language models, making successful attacks easier.

The theoretical reason why the privacy-preserving abil-
ity of LLMs follows scaling low comes from the property
that a deep learning model is not a bi-jective function. Since
the model is not a bi-jective function, different inputs can
lead to the same intermediate features. Due to the special
layers which zero-out the propagation of gradients, the
attacker has to have the guess on specific weights. When the
model has more parameters, with the same model structure
or same drop-out rate, the attacker needs to guess more
values, leading to a lower success rate. As a result, the bigger
the model is, the harder the attack will be.

Apart from considering the number of parameters, each
transformer layer in a language model contains two layer
normalization layers and two dropout out layers. This is
also a factor of why when we place more transformer
layers on clients, the UnSplit is more likely to be ineffective.
With placing more layers on the clients, we introduce more
dropout and layer normalization layers which makes it
harder for the UnSplit to recover the weights of the clients
models and get the reconstructed private data.
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Fig. 13: The change in MSE between outputs of the guessed
client model and the intermediate features, and between
private embedding features and reconstructed embedding
during the attack, in the experiments in Table 4.
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Fig. 14: The change in MSEs
during the attack, in the ex-
periments of the second iter-
ation in Table 2 over GPT-2.
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Fig. 15: Repeat the experi-
ments in Table 2 over GPT-2
by using different tokenizer
lengths.

4.2 Data Difference

Besides the difference in model structures, another differ-
ence between text generation and image classification is the
type of data itself. In the UnSplit attack, we update x′ and
θ according to the MSE between outputs of the guessed
client models and intermediate features. However, such an
MSE loss between the outputs does not necessarily correlate
with the MSE between private data and reconstructed data.
We show these two types of MSE in Fig. 13a, Fig. 13b,
and Fig. 14, with the example of attacking over OPT and
OpenChat on the TextGenerator mini 4. The MSE between
the outputs of the client models and those of the estimated
client models is denoted as MSE outputs, while the MSE
between inputs is labeled as MSE inputs. We can see they
do not have a particular correlation. In Fig. 13a and Fig. 14,
even if the MSE outputs is trained very low, the MSE inputs
can be still high. While in Fig. 13b, it is also possible that the
MSE of inputs is higher than the MSE of outputs.

We would like to explain the reason that these two MSE
do not necessarily have a correlation in the language model.
If we represent a neural network as a function, for most of
the neural networks including language models, Convolu-
tional Neural Networks (CNNs), and Vision Transformers
(ViTs), it is not a bi-jective function. With the same interme-
diate features, there can be multiple possible inputs. Even if
we use the gradient descent method to update the x′ and
minimize the loss between the outputs and intermediate
features, it is possible that two different inputs can lead to
the same intermediate features. With larger input dimension
spaces, the number of potential distinct inputs increases.

TABLE 5: The distance correlation and cosine similarity
between input features and output features of a given layers.

Layers DCor Cos-similarity

Unsplit model, second layer 0.33 0.24
ViT, first layer 0.52 0.29

1D CNN, first two layers 0.47 0.02

GPT-2, first layer 0.19 0.03
GPT-2, first two layers 0.04 0.01

OPT, first layer 0.008 0.006

For instance, the CIFAR10 dataset [30] in the original
UnSplit and PatchShuffling papers has an input dimension
of 3 × 32 × 32. For the text generation task, the dimension
of embedding features, which are the inputs, is N × C .
The feature dimension C is set to 768 in our experiments,
the default setting in the models we used. The N is called
tokenizer length, the length of tokens in each sample. We
can understand it as the number of words. In our setting, it
is 1024 by default. For the models Llama 2 and OpenChat, it
is by default 1× 1030. In production-level language models,
the tokenizer length can be very large, allowing us to input
the contents of an entire book as one sample. For image
classification, we do not have images with such a high
dimension. But for text generation, we can expand the N
according to the actual use cases.

To verify this, we change the tokenizer length and repeat
the experiments in the second iteration in Table 2 over GPT-
2. To make the embedding feature have the same dimension
as image data, the dimension of it is 4 × 768. We can see
from Fig. 15, the attacking accuracy is high. While when we
increase the tokenizer length from 128 to 256, the attacking
accuracy suddenly drop from over 80% to lower than 1%.
The feature dimension of text data is much larger than
image data. In the usual case, we should set a long tokenizer
length and this will make UnSplit not effective.

Besides the dimension of the input data, the value of the
mean square error also indicates different recognizability
over different data. For example, over image classification
task, as shown in PatchShuffling [7], the reconstructed im-
age is similar to the private data even the MSE between
them is about 0.32. In the experiments over OPT shown in
Fig. 3, the MSE between reconstructed embedding and orig-
inal private data are 0.38, 0.33, 0.37 respectively. However,
the attacking accuracies are different, from 43.55% to 17.29%
and 3.83%. And as shown in Table 1, when the accuracy is
lower than 50%, it is hard to tell what the original private
texts are. For the experiment over GPT2 in Table 2, the loss
is 0.055 and the MSE between reconstructed and private
embedding features is 0.18. But the attacking accuracy is
82.57%. In the experiment in the second iteration over Llama
2 in Table 2, the loss is 0.0055 but the attacking accuracy is
only 0.879%. Hence, even with achieving the same MSE loss
between outputs, attacking text data is much harder.

4.3 Feature Difference

As we have discussed, the dimension of the input data is
one factor determining whether the attacks work. To delve
deeper into the feature space, we want to see how features
differ in various cases. Intuitively, one factor will be the
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Fig. 16: The similarity of features between the inputs and
outputs of the second convolution layer in the model in
original UnSplit paper.
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Fig. 17: The similarity of features between the inputs and
outputs of the embedding layer plus the first transformer
layer in the ViT.
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Fig. 18: The similarity of features between the inputs and
outputs of the first two layers in the 1D CNN.

similarity between the inputs and outputs of the layers
placed on the clients. If they are more similar to each other,
it will be easier to infer the inputs (private data) from the
outputs (intermediate features). We use cosine similarity to
measure this, ranging from 0 to 1. If it equals zero, it means
the two features are orthogonal to each other and completely
irrelevant. We also measure the distance correlation [31] to
see how similar the features are. The distance correlation can
measure whether two features are close to each other. The
range is also from 0 to 1. Zero means the two features do
not have any correlation and one means they are the same.
We show the average similarity in Table 5. We also visualize
the heat maps of similarity by randomly picking 8 samples
from the corresponding datasets. For each grid, the value in
the ith row and jth column means the similarity between
the features of the ith channel in the inputs and the features
of the jth channel in the outputs. For convenience, we show
the first 16 channels in the figures.

For the model trained on CIFAR10 in the original paper,
we compare the similarity between inputs and outputs of
the second layer as they are of the same dimension 64 ×
32× 32. For 64 channels, we compare the similarity of each
corresponding channel between input and output. In Fig. 16,
we can see some features are very similar to each other and
others are completely not.
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Fig. 19: The similarity of features between the inputs and
outputs of the first transformer layer in GPT-2.
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Fig. 20: The similarity of features between the inputs and
outputs of the first three transformer layer in GPT-2.
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Fig. 21: The similarity of features between the inputs and
outputs of the first transformer layer in OPT.

In PatchShuffling [7], the vision transformer model is
used. Hence, we visualize the similarity between the output
and input features of the first transformer layer in the ViT-
patch16–224 model. The weights of ViT are pre-trained on
ImageNet [32]. We resize CIFAR10 images to 224 × 224,
leading to a larger feature dimension, which is 196 × 768.
However, the similarity is still high, as shown in Fig. 17.
Hence, it is easy to reconstruct private data without protec-
tion. This is also why PatchShuffling is a defense method
introduced for image classification with ViT using SL.

Apart from image classification, Sharif et al. [11] pro-
posed that it is not safe to train 1D CNN models for ECG
data with split learning. We used the same MIT-BIH arrhyth-
mia [33] for ECG classification and their model. We compare
the similarity between features of the first two layers. In
Fig. 18, we can see the correlation between some feature
vectors are very high. This is also why in the paper [11], it
is not safe to use split learning for training 1D CNN..

For the GPT-2 model, we compare the similarity between
features of the first layer and the first three transformer
layers. The text data has a tokenizer length of 1024, and we
pick the first 16 for visualization in Fig. 19 and Fig. 20. The
cosine similarity between features of the first layer is 0.03,
and of the first three layers, it is 0.01. For the OPT model,
the similarity between features of the first transformer layer
is only 0.006. We visualize this in Fig. 21.

The average similarity metrics for GPT-2 and OPT
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Fig. 22: The GPU memories needed on each clients when
training language models with split learning. We place
several transformer layers on the clients. The numbers in the
x-axis represent the number of layers placed on the clients.

trained on WikiText-103 are smaller than those for ViT and
CNN trained on CIFAR10, approaching values close to zero.
In scenarios where UnSplit proves to be effective, the sim-
ilarity tends to be higher. Though the weights of 1D CNN
model and the model used in the UnSplit original paper are
randomly initialized, the similarity remains high. While for
the language model, we use the pre-trained weights. The
distribution of similarities is more uniformly distributed
and closer to 0. With such a property, training text data on
language models is harder to be attacked.

In conclusion, the natural properties in the language
models and the properties in the data and features in text
generation data help the language model defend against
potential attacks itself. The dropout and layer normalization
layers, which are necessary parts of a language model
for achieving better text generation performance, are also
helpful for improving privacy-preserving abilities.

5 DEFENSE

We have shown that in most situations, existing attack
methods toward SL are not effective for language models.
However, in particular situations such as the first iteration,
when we use the GPT-2 model and place only the first
transformer layer on the clients, the server can reconstruct
the data with over 80% accuracy using the UnSplit attack
method. For such special cases, we need a defense solution.

Considering the three takeaways we have concluded,
one option is to choose a larger model to fine-tune with the
available memory and computation ability on the device.
To save memory when fine-tuning large models, users can
leverage the LoRA method. A simple defense is to place
more transformer layers on clients. Our experiments show
that placing two or three layers is sufficient to defend
against the attack. We show the GPU memories needed for
each client to run first several layers of LLMs in Fig. 22. We
can see that a normal personal computer is able to run split
learning without leaking privacy.

In situations where clients may face constraints in terms
of memory or computational capacity to leverage larger
models or place more layers on the clients, a feasible so-
lution is to run one more iteration. We train the model on a
public dataset for the first iteration. After the first iteration,
users can then fine-tune the model without worrying about
privacy leakage. In our setting, to run one iteration with
a batch size of 4 and tokenizer length of 1024, the client

needs only 4096 tokens retrieved from the Internet. We can
also further save the memory usage on the clients through
quantization techniques such as QLoRA [14].

There are other efforts trying to prevent the privacy
leakage during split learning. One method is to add noise
according to differential privacy over the weights of the
client models or the intermediate features [34]. However,
to achieve certain privacy budget for preventing privacy
leakage, the accuracy will decrease. For example, to achieve
privacy budget of ϵ = 0.67, the accuracy will drop on a
range of 2% to 4% on different tasks using RoBERTa [35].
Shuffling-based methods [18] can achieve the same pri-
vacy budget with less accuracy loss. However, they apply
only to encoder-only transformers, while existing language
models involve decoders or are decoder-only transformers.
Cryptography based methods such as homomorphic en-
cryption [36] will not harm accuracy too much. However,
the latency will be at least 489.07 times of the original split
learning. Hence, running the first iteration with public data,
though simple, is the most effective way to protect privacy,
leveraging the natural property of language models and
requiring no change to the original split learning process.

6 CONCLUDING THE REMARKS

We conduct an extensive examination to find out whether
it is privacy-preserving for users to fine-tune large lan-
guage models through split learning. Our findings indicate
that previously employed attack methods, such as methods
training inverse-networks and UnSplit attacks, prove inef-
fective for text generation tasks and large language models
in the majority of scenarios. With more than one transformer
layer placed on the clients or after the first iteration, an
attacker is not able to reconstruct the private data, no
matter if the users fine-tune the entire model or with the
LoRA method. Our in-depth analysis of the reasons behind
this delves into model structures, data types, and feature
similarities. For isolated instances where an UnSplit attack
might pose a threat, a simple but effective defense method
can resolve this, letting the clients leverage public data in the
first iteration during split learning. Consequently, an adver-
sary is unable to reconstruct private data from intermediate
features. In conclusion split learning can preserve data pri-
vacy for fine-tuning pre-trained large language models.
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