
Towards Privacy-Preserving Split Learning for ControlNet

Dixi Yao
University of Toronto, Hemlig AI, EV.com
dixi.yao@mail.utoronto.ca, Dixi.y@ev.com

Abstract

With the emerging trend of large generative models, Con-
trolNet is introduced to enable users to fine-tune pre-trained
models with their own data for various use cases. A natu-
ral question arises: how can we train ControlNet models
while ensuring users’ data privacy across distributed de-
vices? We first propose a new distributed learning structure
that eliminates the need for the server to send gradients
based on split learning. We discover that in the context
of fine-tuning ControlNet with split learning, most existing
attacks are ineffective, except for two mentioned in previ-
ous literature. To counter these threats, we leverage the
properties of diffusion models and design a new timestep
sampling policy during forward processes. We also propose
a privacy-preserving activation function and a method to
prevent private text prompts from leaving clients, tailored
for image generation with diffusion models. Our experi-
mental results demonstrate that our algorithms and systems
greatly enhance the efficiency of distributed fine-tuning for
ControlNet while ensuring users’ data privacy without com-
promising image generation quality.

1. Introduction
Leading at the forefront in the emerging trend of large

generative artificial intelligence, large diffusion models [35]
have become commercial success stories, with models from
Stability AI and Midjourney dominating the news. With
large diffusion models, any user is able to generate artisti-
cally appealing images with short descriptive text prompts.
However, short descriptive text prompts do not offer a suffi-
cient level of control over the generated images to satisfy a
user’s needs in many cases. To support an additional level
of control using conditions, ControlNet [45] has recently
emerged, allowing users to generate images with a wide
variety of user-defined conditions beyond text prompts.

With fine-grained control over generated images using
ControlNet, it’s intuitive that users would want to fine-tune
pre-trained ControlNet models with their own data to meet
various use cases. However, since the fine-tuning dataset

may contain users’ own artistic creations or faces, privacy
concerns arise. Additionally, each user may possess only
a small number of images, which may not suffice for fine-
tuning a diffusion model unless aggregated, such as in a
collection of 50,000 images [45]. To maintain data privacy,
it’s essential to fine-tune ControlNet with distributed users,
posing the research question: How can we train ControlNet
models while preserving users’ data privacy, particularly
when the data is distributed across multiple client devices?

Split learning [11] (SL) has been heralded in recent years
as a distributed training paradigm that preserves user privacy.
It is suitable for cases where clients lack substantial memory
for local fine-tuning tasks. Split learning has a wide range of
applications in various areas, allowing multiple clients with
limited resources to collaboratively fine-tune a deep learning
model, for example, in health care [38]. This expands the use
cases for leveraging split learning to fine-tune large diffusion
models such as ControlNets and other diffusion models.

In split learning, clients train the first few layers of the
neural network with their local data and transmit interme-
diate features to the server. The server then sequentially
sends gradients back to the clients after the forward pass and
backpropagation. However, recent literature highlights that
split learning can be inefficient and vulnerable to adversarial
attacks, such as inversion attacks [10,23,39,43], which have
the potential to reconstruct private data.

With our analysis of existing attacks, we find that inver-
sion attacks using inverse network models are effective for
reconstructing conditional images when we train models
with split learning. These attacks first train an inverse net-
work on a public dataset and then use it to reconstruct private
data [39, 43]. Furthermore, we find that defending against
such successful attacks with existing defense mechanisms
greatly degrades image generation performance.

Our original contributions are as follows:
First, to enhance the efficiency of fine-tuning ControlNets

using split learning, we design a new structure, eliminat-
ing the need for the server to send data back to the clients,
thereby addressing the issue of efficiency bottlenecks.

Second, inspired by our empirical observations, we find
that the forward process when training diffusion models

can be combined with local differential privacy guaran-
tees. Based on this, we emphasize our privacy-preserving
timestep scheduling policy, establishing a relationship be-
tween timestep scheduling and the privacy budget ϵ. This
allows us to adjust the privacy-preserving ability of the sys-
tem by setting specific scheduling policies. Additionally,
we propose a symmetric activation function to process inter-
mediate features, preventing attackers from reconstructing
condition images while still generating high-quality images.

Third, in addition to the privacy leakage of conditional
images, we further explore the leakage of text prompts. To
train the diffusion model and ControlNet, we need to upload
the text prompts, which may contain private information, to
the server. We propose a new mechanism fine-tuning Con-
trolNets with zero prompts. The fine-tuned model maintains
high performance in image generation, while the server does
not know the text prompts.

Finally, to evaluate performance fairly, we implement a
system to train ControlNet with split learning using PLATO.
It is demonstrated that with our architecture design, clients
require less than 3 GB of GPU memory and experience 3×
lower communication overhead. Unlike existing privacy-
preserving mechanisms, we verify that our mechanism
can protect the privacy of images, conditions, and text
prompts without sacrificing image generation performance.
The code is available at https://github.com/TL-
System/plato/tree/main/examples/split_
learning/controlnet_split_learning.

2. Background and Related Work
2.1. Diffusion Model and ControlNet

Diffusion Models [35] are probabilistic models gradually
denoising a normally distributed variable to generate high-
quality images. Existing diffusion models allow users to
guide image generation with text prompts. It is common in
diffusion model [33] to convert images into latent represen-
tations with an encoder E and conducts the diffusion process
on the latent domain Z. After the sampling process, images
are generated through a corresponding decoder D.

The image generation process involves a sampling pro-
cedure, which is the inverse of the forward process. In the
forward process, we follow a Markov Chain to gradually add
Gaussian noise (N ∼ (0, 1)) to the data, based on a variance
schedule β1, . . . , βT , where t ∈ [T] represents each timestep
of noise addition. We denote this Gaussian noise as n̂. As
an inverse of the diffusion process, during the sampling pro-
cess, the diffusion model outputs an estimation of noise n at
timestep t, and we sample the latent zt−1 using the equation:

zt−1 =
√
αt−1

(
zt −

√
1− αtn√
αt

)
+
√
1− αt−1 − λ2

tn+ λto(zt)

(1)

Here, αt = 1 − βt, λt is a noise coefficient, and o(zt)
is randomly generated from a standard normal distribution.
The sampling process begins with Gaussian noise and gradu-
ally samples until obtaining z0, corresponding to the latent
representation of the image to be generated.

In each training step, we follow Eq. (1) to generate ran-
dom noise n̂ as a label, serving as the ground truth. The
diffusion model’s objective is to learn the parameters θ to
infer the noise n. This inferred noise, the model’s output, is
used for denoising the image.

To enable users to control the generated images with
more detailed conditions such as scribbles [45], canny
lines [1], depth maps [32], HED lines [40], and segmen-
tation maps [47], in addition to the given text prompts, a
conditional diffusion model is proposed.

Apart from stable diffusion models [33], ControlNet can
leverage other backbones such as LCM [24] and Control-
LoRA [14]. Concurrent works, T2I-Adapter [27] and Com-
poser [18], feature much smaller and larger control networks,
respectively. FreeDoM [44] is a training-free conditional dif-
fusion model. However, generating images with fine-grained
conditions, such as canny edge maps, can be challenging, re-
sulting in poor guidance. Training-required methods remain
the optimal solution for conditional diffusion models.

2.2. Decentralized Training of ControlNet

With the assistance of ControlNet, users can fine-tune
well-trained stable diffusion (SD) models without disrupt-
ing the original SD models. However, the conditions and
training images involved may contain privacy-sensitive infor-
mation. One straightforward solution is to train ControlNet
entirely on a single device. For inference with a batch size
of 1, we need 7.50 GB of GPU memory. However, to train
ControlNet, a minimum of 23.82 GB of GPU memory is
needed (with a minimal batch size of 2).

Even if a client has enough GPU memory to fine-tune a
diffusion model locally, another issue arises when collecting
training samples from different users, as it may lack suffi-
cient data. To enable users to fine-tune ControlNets without
their private data leaving their devices, a common solution
is to use privacy-preserving decentralized frameworks.

There are also data encryption approaches in decentral-
ized systems, such as trusted execution environments, multi-
party computation, and homomorphic encryption. However,
the overhead is not at the same scale as computing over
plaintext data. For example, during inference, the forward
time on diffusion models with homomorphic encryption [3]
is 79.19 days, compared to 35 seconds with plaintext using
NVIDIA A100. Moreover, to the best of our knowledge,
there is no encryption method that can be directly applied to
the training process of diffusion models.

To address training challenges of conditional diffusion
models on clients or servers, split learning offers a viable ap-

https://github.com/TL-System/plato/tree/main/examples/split_learning/controlnet_split_learning
https://github.com/TL-System/plato/tree/main/examples/split_learning/controlnet_split_learning
https://github.com/TL-System/plato/tree/main/examples/split_learning/controlnet_split_learning

proach, involving multiple clients and a server. Split learning
spans a neural network across the cloud and edge. The edge
device trains up to a partition layer and sends intermediate
features to the server, which completes forward propagation
with remaining layers. During back-propagation, the server
propagates to the partition layer, sending gradients to the
client, which updates local parameters. However, split learn-
ing’s sequential nature leads to resource underutilization
and high transmission overhead, extending training. Each
step requires feature and gradient exchanges, with one party
waiting as the other computes or transmits data.

2.3. Privacy Leakage in Split Learning

Potential threats arise from SL, as it carries the risk of pri-
vacy leakage through data transmission between clients and
the server. Literature highlights that an honest-but-curious
server could reconstruct private data using the intermediate
features sent from clients to the server. Zhang et al. [46]
successfully reconstructed private data with knowing model
weights. UnSplit [10] further refined this method to con-
duct a similar attack without knowing model weights. He
et al. [13] trained an inverse network using a public dataset,
taking intermediate results as inputs to output private data
for reconstruction. Pasquini et al. [29] proposed an attack to
reconstruct private data by manipulating gradients sent back
to clients, under the assumption of a dishonest server. Duan
et al. [6] introduced a membership inference attack (MIA)
tailored specifically for diffusion models, although they ac-
knowledged its limited applicability in real-world scenarios.
Additionally, Carlini et al. [2] utilized leaked text prompts to
generate numerous images, subsequently employing MIA to
identify which images exist in private datasets.

2.4. Privacy Protection in Split Learning

In response to potential privacy leakage in split learning,
researchers have made efforts to defend against such attacks.
Local differential privacy techniques, such as additive noise
and randomized response [9], are employed to prevent recon-
struction. Additionally, Gaussian noise is utilized to directly
add noise to the raw data [23]. Subsequently, many works
have adopted methods involving additive noise [26, 36, 37].
DataMix [23] and CutMix [28] leverage the concept of
mixing a batch of samples. DataMix is designed for con-
volutional neural networks, while CutMix is tailored for
vision image transformers. PatchShuffling [41–43] is a
method specifically designed for transformer-structured mod-
els, where patches are shuffled among a batch of samples.
However, all these methods must provide sufficient privacy
guarantees at the cost of significant performance decreases.

Xiao et al. [39] utilized adversarial learning to enable
clients to generate intermediate results that the server cannot
use to reconstruct images. Shredder [26] introduced noise
based on mutual information, while DISCO [34] employed

Figure 1. The deployment of ControlNet across the clients and the
server under different structures. Function f is zt = f(z0, t, n̂) =√
αtz0 +

√
1− αtn̂.

a channel obfuscation method to process features before
transmitting them to the server. However, all three of these
methods are only applied during the inference stage and
require training a network to process features.

3. Speeding Up Fine-Tuning ControlNet

3.1. Fine-Tuning ControlNet with Split Learning

We first introduce the deployment for fine-tuning a dif-
fusion model with ControlNet using split learning. Unlike
dense models like ResNet [12], which have sequential blocks,
the conditional diffusion model has two parts: a diffusion
model with frozen weights and a trainable control network.
The control network processes condition images with a con-
dition encoder trained from scratch and mixes it with the
noisy latent representation as input for the following blocks.

Considering hiding the complete model weights of the
well-trained diffusion models from the clients and achieving
the best tradeoff between privacy and efficiency through
choosing different partition points, we cut right after the first
diffusion model encoder and the trainable condition encoder.

Regarding the diffusion model, if we place the partition
point before the first encoder block, the server can subtract
the estimated noise n from received zt in Eq. (1) to recover
the z0 and retrieve the private images.

3.2. Accelerating by Not Sending Gradients Back

To do split learning in practical use cases, we propose
a new structure to address the efficiency bottleneck. This
design ensures that the server does not need to send back
gradients, thereby removing the sequential dependency be-
tween clients and the server during fine-tuning. Instead of
training a condition encoder for each different condition, we
propose to replace it with the pre-trained encoder used in the
diffusion model. This way, clients only need to perform infer-
ence, allowing them to continuously forward without waiting
for gradients from the server. This approach addresses the
bottleneck caused by the sequential training manner.

As the clients share the same pre-trained model and the
server model is shared between all clients, we do not need to
aggregate client models. This makes the trained ControlNet
have the same performance as centralized training. Besides
that, since the condition encoder and pre-trained encoder
both only need images as inputs, the replacement will not
cause the outputs to have distribution drift. Hence, image
generation performance will not be affected. We compare
the memory usage, fine-tuning efficiency, and transmission
overhead of these two structures in Tab. 1. The details about
experimental settings are in Appendix A.

Without sending back the gradients, our new structure
can save much transmission overhead. Additionally, by elim-
inating the forward-backward lock between the client and
the server, the clients, server, and intermediate data trans-
mission can operate in a parallel pipeline. Clients no longer
need to wait for other clients or the server, reducing the
time required for each client. Our whole fine-tuning time is
max({Tc,Ts,T/r}) while the original split learning struc-
ture needs Tc +Ts +T/r for fine-tuning, where r is the
data transmission rate. We can increase the number of clients
if we want, but since Ts is much larger than Tc, the whole
fine-tuning time is the same.

4. Privacy-Preserving ControlNet Fine-Tuning

4.1. Threat Modeling

We begin by defining the threat model in practical sce-
narios. We assume the server to be honest but curious. In
our designed split learning structure, although the server
does not need to send gradients back to the clients, it will
still accurately complete the remaining fine-tuning in each
split learning iteration and send n to the clients. However,
simultaneously, the server will attempt to reconstruct private
data using the received intermediate features. The server
can conduct the reconstruction process in the background,
ensuring that clients remain unaware of the attacks. More
details about the threats are presented in Appendix C.1.1.

Table 1. Comparison of memory usage, fine-tuning time, and
transmission overhead for different structures. Mc and Ms denote
GPU memory usage (in GB) on the client and server, respectively.
Tc and Ts indicate fine-tuning time (in hours) on the client and
server. T represents transmission overhead (in GB).

Structure Mc Ms Tc Ts T

Split learning 2.78 22.04 22.46 14.10 559.17
Ours 2.75 22.04 0.446 14.10 186.56

4.2. Attacking Methods

Several threats in split learning include leakage of inputs
to labels. The most threatening attack is the inversion attack,
which attempts to reconstruct original private data from the
received intermediate feature.

In this paper we will put emphasis on two threats. Inverse
network-based attacks for reconstructing condition images
and the leakage of text prompts. More details are presented
in Appendix C.1.2 to show that these two threats are the
remaining threats which are effective and valid in practical
settings when fine-tuning ControlNets with split learning.

Inversion attack is based on training an inverse net-
work [13, 23, 43]. In this approach, the attacker first trains
an inverse network and it will take the intermediate features
as inputs and outputs the reconstructed private data.

4.3. Local Differential Private Timestep Sampling

To achieve privacy protection against reconstructing pri-
vate images, we can add noise to the original inputs or in-
termediate features [7], making it (ϵ,∆)-LDP. The noise
added can be Gaussian noise [5, 9].

Definition 4.1. ((ϵ,∆)−LDP noise adding.) A mechanism
of adding noise over samples is ϵ−LDP if the Gaussian noise
follows the normal distribution

n ∼ N
(
0, 2 ln

1.25

∆
α2 · 1

ϵ2

)
(2)

In literature, α is called sensitivity. It is the biggest L2

distance between all possible inputs or intermediate features
we are going to add noise.

If we examine the structure of ControlNet carefully, we
find that the forward process involves adding noise to the
latent representation. We will next show that this mechanism
is (ϵ,∆)−LDP using Definition 4.1. Based on this property,
we propose a new sampling scheme over timesteps during
the diffusion process, preserving privacy.

Given a latent representation z0, we generate the noisy
latent representation according to the timestep t, scheduling

parameter βt, and randomly generated noise n̂t ∼ N (0, 1):

zt =
√
1− βtz0 +

√
βtn̂t ⇒

zt√
1− βt

= z0 +

√
βt

1− βt
n̂t

(3)
According to Fig. 1, zt is the input to the first encoder

block of diffusion model. Because βt is usually a small
number, we approximate Eq. (3) as,

zt ≈ z0 +

√
βt

1− βt
n̂t (4)

We can view this equation as adding a noise following distri-
bution N (0, βt

1−βt
) over z0 to get zt. We then substitute the

variance in Definition 4.1. For convenience, we denote H as
hyper-parameter 2 ln 1.25

∆ α2.

βt

1− βt
= H · 1

ϵ2
⇒ ϵ =

√
H · 1− βt

βt

(5)

In the diffusion model, we employ the linear scheduling as
the default method which is βt = k · t+ β0, where k, β0 are
scheduling parameters. Hence, we can derive the following
relationship between privacy budget ϵ and t, k, and β0:

ϵ(t, k, β0) =

√
H ·

(
1

kt+ β0
− 1

)
(6)

We can see that the privacy budget is related to the
timestep. Based on Eq. (6), we can set proper privacy budget
by setting different t, k, β0 in fine-tuning ControlNet.

Remark 4.2. ((ϵ,∆)-LDP timestep sampling mechanism in
diffusion model) With a given privacy budget ϵ, we can have
a sampling process in diffusion model which is (ϵ,∆)-LDP.
The value of ϵ is set by a timestep ranging in [ts, tmax] and
scheduling parameters k and β0, according to Eq. (6).

4.4. Noise-Confounding Activation Function

However, as we can see from the Eq. (3), if we directly
send the encoded condition mixed with the noisy latent rep-
resentation to the server, as the server knows the timestep t
and the label n̂, it can directly subtract the added noise from
Eq. (3). Hence, to confuse the attacker from stealing privacy,
we propose to add a noise-confounding activation layer be-
fore sending features to the server. To design an activation
function keeping privacy-preserving property while main-
taining the image generation performance, we pass the sum
of the encoded condition and the noisy latent representation
through such a function:

y = |x| ·
(

2

1 + e−x

)
+ δ (7)

0-2 2

-2

2

Figure 2. The graph of
Eq. (7) when δ = 0.

SD Encoder/Decoder Block

Text Encoder

Timestep
Encoder

Timestep

Text
prompts

Input

Attention Module

Figure 3. The structure of the en-
coder and decoder block in original
diffusion model and ControlNet.

The δ is a randomized noise following distribution N ∼
(0, 1). The noise δ is randomized at the beginning of the
fine-tuning and fixed during the fine-tuning. The server or
the attacker has no access to δ. The function graph of Eq. (7)
is shown in Fig. 2. The functionality of this function is
to prevent the attacker from inferring the sum of the latent
representation and encoder condition. To maintain image
generation performance, we adopt a symmetric design with
an SiLU-like shape. The SiLU function is a widely used
activation function, which can help improve the performance
of neural networks. As δ is fixed during the fine-tuning, the
quality of the summation will not be degraded.

4.5. Prompt-Hiding Fine-Tuning

Apart from protecting image privacy, text prompts can
also contain private information. In the original ControlNet,
for each encoder and decoder block in the diffusion model
and control network, text prompts are input into the blocks,
and attention modules are applied to allow the generated
images to learn the prompts. As a result, clients must upload
text prompts or features to the server, exposing raw text in-
formation and risking privacy leaks. Uploading text encoder
output features may prevent the server from accessing raw
text, but the server can still use Carlini et al. ’s method [2] to
extract fine-tuning data using text features as inputs.

As a result, to hide prompts from the server, we propose
not to send the text prompts to the server directly. During
the fine-tuning, only the SD Encoder Block 1 in Fig. 1 on
the clients, will take in text prompts as the input. The text
prompts will not be uploaded to the server. Therefore, other
encoder and decoder blocks in ControlNet, situated on the
server, won’t utilize text prompts as inputs. Removing text
prompts will not affect the performance of condition and
image encoders as they are irrelevant to prompts. However,
the input distribution of server-side encoders and decoders
has changed. To maintain high-quality image generation, we
introduce the following prompts-hiding training methods.

As the diffusion model is frozen and able to always keep
the generation performance of a well-trained diffusion model
while the control network needs further training, we use
different policies for the encoder and decoder blocks in the

Table 2. Comparison of image generation and privacy preservation
among different deployments over Scribble condition

Methods
Performance Privacy

FID↓CLIP↑ CelebA ImageNet
PSNR↓SSIM ↓PSNR ↓SSIM ↓

Centralized 19.53 26.04 – – – –
SL 19.46 26.87 14.41 0.37 8.17 0.35

Ours 13.45 26.85 13.15 0.37 7.34 0.47

control network and diffusion model. For blocks in control
networks, no text features will be input and the attention
modules will be replaced by self-attention modules for the
condition features. Since we still need to further fine-tune
the control network, the distribution drift caused by removal
of text input will be mitigated during training.

To maintain the high image generation performance of
the frozen diffusion model, we will keep the text attention
modules but input a zero text feature. The zero text feature
has the same feature dimension (by default 768) as the origi-
nal but with a length of one and weights of zero. We need
to keep the text input distribution consistent for these blocks
since they will not be further trained. Otherwise, distribution
drift will affect image generation performance.

5. Evaluation
5.1. Experimental Settings

We first briefly introduce experimental settings. More
details are in Appendix D.

Execution Environment. We conduct all experiments
on PLATO [19], an open-source research framework for de-
ploying decentralized training on multiple devices. We can
use PLATO to deploy the server and clients of large-scale
decentralized training on separate devices conveniently.

Models and Datasets. For the pre-trained models, we
used Stable Diffusion V-1.5 and ControlNet V-1.1. The
autoencoder is from the pre-trained CLIP model with ViT-
Large-Patch14 [30]. We use MS-COCO [21] as the training
dataset for fine-tuning diffusion models to generate high-
quality images with given conditions. It is a common dataset
for fine-tuning diffusion models and text-to-image tasks.

Evaluation Metrics. For comparing performance, we
must verify that the privacy-preserving method does not
harm image generation and that an adversary cannot recon-
struct private images. For the first objective, we use Fréchet
Inception Distance [15] (FID) to evaluate generated image
quality and the CLIP score [30] to assess whether prompts
and generated images match (in range of [0, 100]). Lower
FID indicates better image quality, while a higher CLIP score
shows better alignment between text prompts and generated

images. For the second objective, we use PSNR and SSIM@.
More details are in Appendix C.3.1. Lower PSNR and SSIM
indicate reconstructed images are less similar to private data,
meaning better privacy-preserving effectiveness.

Conditions. Within the realm of conditional image gen-
eration, various tasks involve different conditions. We assess
three types: canny lines, scribbles, and segmentation maps.
These conditions range from detailed to coarse, with varying
line detail. Examples appear in Appendix E.

Sampling. During the training process of ControlNet, the
timestep is sampled among the range of [ts, tmax]. With the
default k and β0, we say ϵs = ϵ(ts, k, β0). So, according
to Eq. (6), during the training process, the privacy budget is
equal to or larger than ϵs. Because we need to ensure that
the privacy of every image is preserved, when we evaluate
the effectiveness of privacy-preserving methods, in terms of
both numerical data and visualization, we consider the worst
case of least noise added and sample the timestep as ts and
send the intermediate features to the server.

5.2. Implementation

We briefly introduce the implementation of our methods
and baselines. More details about the implementation are
in Appendix F. For our privacy-preserving methods, we set
the tmax, k, and β0 as default in ControlNet [45] which
are 1000, 1.115 × 10−5 and 8.85 × 10−4 respectively. If
ts is too big, the sampling range will be too small to get
enough samples. If ts is too small, no privacy protection
will be guaranteed. Hence, we set the ts around middle
point which is 536, which results in ϵs ≈ 8. The tuning of
hyperparameter is in Appendix G.

We denote our structure without any privacy-preserving
methods implemented (Sec. 3.2) as Ours. We implement our
methods in three ways: only protecting conditions (Ours+c),
only hiding prompts (Ours+t) and both (Ours++). The
training latency remains the same after adding our privacy-
preserving methods.

Implementation of baselines. We compare our meth-
ods with several state-of-the-art privacy-preserving methods
which can be used for split learning with ControlNet and
conventional training options.

LDP rr is a local differential private [8] mechanism with
random response. The privacy budget is 2.

LDP number means the mechanism in Definition 4.1.
We have three values for privacy budgets: 0.1, 0.3, and 0.5.

Add number means the mechanism of adding Gaussian
noise on the raw data according to the distribution N ∼
(0, σ2). We have two numbers: σ2 = 1 and σ2 = 50.

Mixup is the method of mixing up data proposed in
DataMix [23] and CutMix [28]. We mix four images to-
gether which is the same as the batch size.

PS is the method called patch shuffling [41, 43]. The
patch size is set to 4, same as the batch size.

Table 3. Comparison of image generation and privacy preservation among different methods over Canny and Segmentation conditions

Condition Canny Segmentation
Attack
works?Methods

Performance Privacy Performance Privacy

FID ↓ CLIP ↑ CelebA ImageNet
FID ↓ CLIP ↑ CelebA

PSNR ↓ SSIM ↓ PSNR ↓ SSIM ↓ PSNR ↓ SSIM ↓

Centralized 11.60 26.42 − − − − 15.23 26.82 − − ✓
SL 11.46 26.61 18.54 0.89 23.10 0.94 17.74 27.76 11.80 0.45 ✓

Ours 18.59 26.21
18.86 0.73 22.84 0.86

14.35 26.92
12.18 0.49 ✓

Ours+t 16.80 26.20 15.68 26.70
Ours+c 14.52 26.80

17.45 0.51 21.74 0.70
15.05 26.85

1.68 0.46 ×
Ours++ 16.80 26.50 16.32 26.39

LDP rr 18.11 27.22 18.86 0.82 23.77 0.97 17.49 27.23 14.92 0.72 ✓
LDP 0.1 18.00 27.15 16.84 0.03 19.70 0.04 17.96 27.15 7.56 0.33 ×
LDP 0.3 17.28 27.12 18.65 0.79 23.33 0.88 17.21 27.13 8.41 0.36 ✓/×
LDP 0.5 12.27 26.53 19.81 0.90 24.31 0.95 17.46 27.21 11.21 0.51 ✓
Add 1 11.77 26.60 25.69 0.98 31.02 0.995 17.51 27.30 22.96 0.88 ✓

Add 50 19.69 26.84 25.53 0.99 30.60 0.99 17.60 27.29 23.05 0.90 ✓
Mixup 401.62 13.54 17.96 0.14 22.84 0.19 384.24 13.99 13.45 0.73 ×/✓

PS 17.39 27.16 21.25 0.95 25.85 0.98 17.62 27.22 22.64 0.92 ✓

Arrow directions indicate superior image quality and increased difficulty in recognizing reconstructed data.
For privacy: ✓ and × whether the attack is able to reconstruct condition image. − means not applicable.

Centralized means images generated by the well-trained
ControlNet. We directly use the downloaded models to
generate images. This is a production-level baseline.

SL is the deployment of ControlNet with SL without any
privacy-preserving methods applied (Sec. 3). We fine-tune
ControlNet following steps of conventional SL.

5.3. Comparison Results

We present quantitative results in Tab. 3. The conclusion
is that from numerical data and visualization, we can see that
our method can protect privacy without loss of image
generation quality tailored for ControlNet based diffusion
models. The methods that can generate images correctly can-
not preserve privacy as well. Methods that preserve privacy
well cannot generate high-quality images. To improve image
quality, a smaller disruption magnitude (e.g., lower privacy
budget) is needed. Although advanced methods like Mixup
and PS can protect privacy in some cases, they still fail to
generate images of good quality that meet the conditions.

One of our new insights is that all previous privacy-
preserving methods try to propose a general method for
split learning, overlooking the variance between different
use cases. We can easily extend methods like DataMix from
image classification to different tasks. However, they cannot
achieve satisfactory performance when we really verify them
on the task of image generation. Our privacy-preserving
method is tailored for ControlNet based diffusion models,
considering the specialty of the overall model structure of

diffusion models to how prompts are processed.

5.3.1 Maintenance of Image Generation Performance

To assess image generation performance with different
privacy-preserving methods, we generate images under three
conditions: canny, scribble, and segmentation. Examples
are shown in Fig. 4 and Appendix E. We achieve image
quality comparable to production-level ControlNet in cen-
tralized training. Apart from FedAvg, which does not work
for ControlNet, methods like PS and previously proposed
LDP mechanisms fail to generate images conforming to the
conditions. Mixup cannot even generate a natural image.

An interesting result is that our designed split learning
structure not only improves the efficiency but also improves
the quality of generated images, reflected by FID. For exam-
ple, on scribble conditions, we can improve FID from 19.53
to 13.45. This is possible as the pre-trained CLIP model
is well-trained on large datasets. While for other methods,
such as LDP Gaussian noise adding, though they can provide
strong privacy protection with a small privacy budget, they
need to sacrifice image generation quality. Furthermore, our
methods preserve data privacy regardless of the number of
samples on each client. Clients only need to make inferences
from our designed structure. The results of inference are
irrelevant to the number of samples passed through the mod-
els. Another reason is that our methods do not mix several
training samples like what Mixup and Patch Shuffling did.

(a) Condition (b) Centralized (c) SL (d) Ours (e) Ours+t (f) Ours+c (g) Ours++ (h) LDP rr

(i) LDP 0.1 (j) LDP 0.3 (k) LDP 0.5 (l) Add 1 (m) Add 50 (n) Mixup (o) PS

Figure 4. Image generation: Images of higher quality means better. Randomly selected and non-cherry-picked examples of images
generated with the Canny condition under different methods. The text prompt is a blue rabbit with glasses.

(a) Canny (b) SL (c) Ours (d) Ours++

(e) LDP rr (f) LDP 0.1 (g) LDP 0.3 (h) LDP 0.5

(i) Add 1 (j) Add 50 (k) Mixup (l) PS

Figure 5. Privacy preserving: Higher distortion means better
privacy preservation. Randomly selected and non-cherry-picked
examples of reconstructed condition images of condition canny.

5.3.2 Privacy-preserving Ability

One observation is that depending on the granuality of differ-
ent conditions, the needs of privacy-preservation is different.
For segementation condition, when trivial split learning is
implemented, the attacker is unable to reconstruct private im-
ages on ImageNet dataset where PSNR is 11.53 and SSIM is
0.50. When our method deployment structure is used, PSNR
is 9.95 and SSIM is 0.47. For scribble condition, we can
preserve the privacy by adopting our deployment method.
The result is shown in Tab. 2.

While for Canny on both datasets and Segmentation on
CelebA, a privacy-perserving solution is needed. For canny
conditions, we can see results in Tab. 3 attackers find it easier

to reconstruct private data, while for scribble conditions, it
is much harder. However, as canny contains richer informa-
tion, including complex lines, protecting such conditions is
crucial. We analyze privacy concerns for individual con-
ditions and datasets separately. In segmentation, attack
success depends on the datasets. In cases where split learning
with the original and our structure can defend against exist-
ing attacks, our methods enhance privacy. For other cases,
we can reduce PSNR from 11.80 to 1.68, protecting privacy.
To get a straightforward sense of privacy-preserving per-
formance, we show examples of reconstruction by inverse
network-based attacks in Fig. 5 using condition canny.

6. Concluding the Remarks

In this paper, we address the challenge of fine-tuning Con-
trolNet models with locally distributed data across multiple
users, focusing on feasibility and privacy. Considering that
clients cannot afford high GPU memory requirements for
on-device training, we turn to split learning to solve such
a problem where we first improve the structure so that the
server does not need to send gradients back to the clients,
greatly improving efficiency. For existing threats in practical
settings, we propose differential private timestep sampling, a
noise-confounding activation function, and prompts-hiding
fine-tuning, based on the built-in mechanisms in diffusion
models with tunable privacy budgets. We show convincing
results from a wide array of experiments that our method can
provide stronger privacy protection without loss of image
generation performance and train the models faster than its
state-of-the-art alternatives in the literature.

Acknowledgment

We thank Professor Baochun Li, University of Toronto for
valuable comments that greatly improved the manuscript.

References
[1] John Canny. A computational approach to edge detection.

IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), pages 679–698, 1986. 2

[2] Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagiel-
ski, Vikash Sehwag, Florian Tramèr, Borja Balle, Daphne
Ippolito, and Eric Wallace. Extracting training data from dif-
fusion models. In Proceedings of the 32nd USENIX Security
Symposium (USENIX Security), pages 5253–5270, 2023. 3,
5, 12

[3] Yaojian Chen and Qiben Yan. Privacy-preserving diffu-
sion model using homomorphic encryption. arXiv preprint
arXiv:2403.05794, 2024. 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. ImageNet: A large-scale hierarchical im-
age database. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
248–255, 2009. 13

[5] Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differ-
ential privacy. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 84(1):3–37, 2022. 4

[6] Jinhao Duan, Fei Kong, Shiqi Wang, Xiaoshuang Shi, and
Kaidi Xu. Are diffusion models vulnerable to membership
inference attacks? In Proceedings of the International Con-
ference on Machine Learning (ICML), 2023. 3

[7] Cynthia Dwork. Differential privacy: A survey of results. In
Proceedings of the International conference on theory and
applications of models of computation (TAMC), pages 1–19,
2008. 4

[8] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N Roth-
blum, and Salil Vadhan. On the complexity of differentially
private data release: Efficient algorithms and hardness results.
In Proceedings of the forty-first annual ACM symposium on
Theory of computing (STOC), pages 381–390, 2009. 6

[9] Cynthia Dwork and Aaron Roth. The algorithmic foundations
of differential privacy. Theoretical Computer Science (TCS),
9(3-4):211–407, 2014. 3, 4

[10] Ege Erdoğan, Alptekin Küpçü, and A. Ercüment Çiçek. Un-
Split: Data-oblivious model inversion, model stealing, and
label inference attacks against split learning. In Proceedings
of the 21st Workshop on Privacy in the Electronic Society
(WPES), page 115–124, 2022. 1, 3, 12, 13

[11] Otkrist Gupta and Ramesh Raskar. Distributed Learning
of Deep Neural Network over Multiple Agents. Journal of
Network and Computer Applications (JNCA), 116:1–8, 2018.
1

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition (CVPR), pages 770–778, 2016. 3

[13] Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inver-
sion attacks against collaborative inference. In Proceedings of
the 35th Annual Computer Security Applications Conference
(ACSAC), pages 148–162, 2019. 3, 4, 12

[14] Wu Hecong. ControlLoRA Version 2: A Lightweight Neural
Network To Control Stable Diffusion Spatial Information
Version 2, 9 2023. 2

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. GANs trained by a two
time-scale update rule converge to a local Nash equilibrium.
In Proceedings of the Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 6629–6640, 2017. 6

[16] Alain Hore and Djemel Ziou. Image quality metrics: PSNR
vs. SSIM. In Proceedings of the International Conference on
Pattern Recognition (ICPR), pages 2366–2369, 2010. 13

[17] Gary Huang, Marwan Mattar, Honglak Lee, and Erik Learned-
Miller. Learning to align from scratch. In Proceedings
of the Advances in Neural Information Processing Systems
(NeurIPS), pages 764–772, 2012. 12

[18] Lianghua Huang, Di Chen, Yu Liu, Yujun Shen, Deli Zhao,
and Jingren Zhou. Composer: Creative and controllable
image synthesis with composable conditions. arXiv preprint
arXiv:2302.09778, 2023. 2

[19] Baochun Li, Ningxin Su, Chen Ying, and Fei Wang. Plato:
An open-source research framework for production federated
learning. In Proceedings of the 2023 ACM Turing Award
Celebration Conference (ACM TURC), pages 1–2, 2023. 6

[20] Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang,
Junyuan Xie, Virginia Smith, and Chong Wang. Label leakage
and protection in two-party split learning. In Proceedings of
the International Conference on Learning Representations
(ICLR), 2021. 12

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
Proceedings of the European Conference on Computer Vision
(ECCV), pages 740–755, 2014. 6, 11, 13

[22] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 3730–3738, 2015. 12, 13

[23] Zhijian Liu, Zhanghao Wu, Chuang Gan, Ligeng Zhu, and
Song Han. DataMix: Efficient privacy-preserving edge-cloud
inference. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 578–595, 2020. 1, 3, 4, 6,
12

[24] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang
Zhao. Latent consistency models: Synthesizing high-
resolution images with few-step inference. arXiv preprint
arXiv:2310.04378, 2023. 2

[25] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Proceedings of he 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), pages 1273–1282,
2017. 11

[26] Fatemehsadat Mireshghallah, Mohammadkazem Taram,
Prakash Ramrakhyani, Ali Jalali, Dean Tullsen, and Hadi Es-
maeilzadeh. Shredder: Learning noise distributions to protect
inference privacy. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 3–18,
2020. 3

[27] Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhon-
gang Qi, Ying Shan, and Xiaohu Qie. T2I-Adapter: Learning

adapters to dig out more controllable ability for text-to-image
diffusion models. arXiv preprint arXiv:2302.08453, 2023. 2

[28] Seungeun Oh, Jihong Park, Sihun Baek, Hyelin Nam, Pra-
neeth Vepakomma, Ramesh Raskar, Mehdi Bennis, and
Seong-Lyun Kim. Differentially private cutmix for split learn-
ing with vision transformer. In Proceedings of the First Work-
shop on Interpolation Regularizers and Beyond at NeurIPS,
2022. 3, 6

[29] Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi.
Unleashing the tiger: Inference attacks on split learning. In
Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 2113–2129, 2021.
3, 12, 13

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In Proceedings of the International Conference on Machine
Learning (ICML), pages 8748–8763, 2021. 6, 11

[31] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image genera-
tion with clip latents. arXiv preprint arXiv:2204.06125, 2022.
11

[32] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 44(3):1623–1637, 2020. 2

[33] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022. 2

[34] Abhishek Singh, Ayush Chopra, Ethan Garza, Emily Zhang,
Praneeth Vepakomma, Vivek Sharma, and Ramesh Raskar.
DISCO: Dynamic and invariant sensitive channel obfuscation
for deep neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12125–12135, 2021. 3

[35] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In Proceedings of the In-
ternational Conference on Machine Learning (ICML), pages
2256–2265, 2015. 1, 2

[36] Tom Titcombe, Adam J Hall, Pavlos Papadopoulos, and
Daniele Romanini. Practical defences against model inver-
sion attacks for split neural networks. In Proceedings of the
ICLR 2021 Workshop on Distributed and Private Machine
Learning (DPML), 2021. 3

[37] Praneeth Vepakomma, Otkrist Gupta, Abhimanyu Dubey,
and Ramesh Raskar. Reducing leakage in distributed deep
learning for sensitive health data. In Proceedings of the ICLR
AI for Social Good Workshop, volume 2, 2019. 3

[38] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and
Ramesh Raskar. Split learning for health: Distributed deep
learning without sharing raw patient data. arXiv preprint
arXiv:1812.00564, 2018. 1

[39] Taihong Xiao, Yi-Hsuan Tsai, Kihyuk Sohn, Manmohan
Chandraker, and Ming-Hsuan Yang. Adversarial learning
of privacy-preserving and task-oriented representations. In
Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pages 12434–12441, 2020. 1, 3

[40] Saining Xie and Zhuowen Tu. Holistically-nested edge de-
tection. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 1395–1403, 2015.
2

[41] Hengyuan Xu, Liyao Xiang, Hangyu Ye, Dixi Yao, Pengzhi
Chu, and Baochun Li. Shuffled transformer for privacy-
preserving split learning. arXiv preprint arXiv:2304.07735,
2023. 3, 6

[42] Hengyuan Xu, Liyao Xiang, Hangyu Ye, Dixi Yao, Pengzhi
Chu, and Baochun Li. Permutation equivariance of transform-
ers and its applications. In Proceedings of The IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2024. 3

[43] Dixi Yao, Liyao Xiang, Hengyuan Xu, Hangyu Ye, and
Yingqi Chen. Privacy-preserving split learning via patch
shuffling over transformers. In Proceedings of the IEEE Inter-
national Conference on Data Mining (ICDM), pages 638–647,
2022. 1, 3, 4, 6, 12

[44] Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and
Jian Zhang. FreeDoM: Training-free energy-guided condi-
tional diffusion model. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
23174–23184, 2023. 2

[45] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 3836–3847, 2023. 1, 2, 6, 11,
14

[46] Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo
Li, and Dawn Song. The secret revealer: Generative model-
inversion attacks against deep neural networks. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition (CVPR), pages 253–261, 2020. 3, 12

[47] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Bar-
riuso, and Antonio Torralba. Scene parsing through ade20k
dataset. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 633–641,
2017. 2

Figure 6. The image on the right
is generated from the ControlNet
with a condition image on the
left. The condition is an image
of depth maps. The text prompt
is: Stormtrooper’s lecture.

Figure 7. The image on the right
is generated from the ControlNet
trained by FedAvg using the con-
dition image on the left. The text
prompt is: A skier poses for a
shot on the night time slopes.

A. Details about Experimental Settings in
Sec. 3.2

The diffusion model is stable diffusion V-1.5, ControlNet
is of version 1.1, and the autoencoder is ViT-Large-Patch14
CLIP model [30]. The input resolution is 512 × 512. The
NVIDIA A100 serves as the server’s device, and the NVIDIA
A4500 is used for clients’ devices. The fine-tuning batch
size is 4, and the model is trained for 2.5 × 103 iterations.
The number of clients is 50, with each client having 1000
training samples.

B. Alternative Distributed Training Paradigms

Federated learning (FL) is an alternative distributed train-
ing paradigm that preserving users privacy by training di-
rectly on client devices and aggregating local training up-
dates using a federated learning server. However, conven-
tional federated learning may not be suitable for fine-tuning
large ControlNet and diffusion models for three important
reasons. First, ControlNets and diffusion models are large
generative models, requiring formidable GPU resources on
client devices for local fine-tuning of pre-trained models.
Second, even if such GPU resources were available on client
devices, pre-trained ControlNet and diffusion models may
not be accessible as open-source due to commercial interests.
For example, neither OpenAI nor Midjourney has open-
sourced models like DALL·E 2 [31]. Finally, our experimen-
tal results presented here indicate that large ControlNet mod-
els fine-tuned with conventional federated averaging [25] as
the aggregation mechanism experienced severely degraded
performance compared to centralized training.

We follow the standard federated averaging scheme to
train the ControlNet with 50 clients, each having 1000 train-
ing samples. We train for a total of 100 rounds and aggregate
weights after every 250 local iterations. We evaluate the per-
formance on the MS-COCO [21] validation set. An example
of successful fine-tuning of a ControlNet [45] is shown in
Fig. 6. We can generate a stormtrooper with the same skele-
tons as in the left image of the depth maps. However, as
shown in Fig. 7, even under the assumption that clients have

SD Encoder Block1

AutoEncoder

Original Image Condition

On the client

Private data

Copied client
model

Reconstructed
private input

MSE loss

White-box setting

Inverse network

Reconstructed
private input

Inverse network based

Public
data

Trainable guessed
client model

Reconstructed
private input

MSE loss

Black-box setting (UnSplit)

Trained

Gradient descent based

Sampling Module

Condition
Encoding

Figure 8. The illustration of different inversion attacks.

powerful computing units and the weights of the diffusion
model are available, the ControlNet trained by FedAvg [25]
fails to learn the conditions. The generated image does not
match the condition at all; for example, the posture of the
person in the generated image differs from that in the left
condition images.

Although there may exist other aggregation scheme in fed-
erated learning and privacy-preserving methods in federated
learning, considering the existing challenges of training mod-
els on the clients and unavailability of the whole pre-trained
models, we leave the exploration of federated learning and
other distributed paradigms for future work. In this paper’s
scope, we focus on split learning.

C. Re-evaluating Potential Attacks
C.1. Potential Threats in Split Learning

C.1.1 Complementary about Threat Modeling

In our evaluation, we do not consider clients to be malicious.
In split learning, a client receives no data if using our pro-
posed framework. Therefore, malicious or colluding clients
cannot obtain data related to constructing private images
from other clients. However, malicious or colluding clients
may send crafted data to the server to launch attacks, such
as harming model utility. Such cases are detectable since the
model cannot generate correct results. As our focus is on
adversaries attempting to reconstruct private images, we do
not consider this threat.

C.1.2 Complementary about Attacking Methods

Several threats have been specifically proposed in split learn-
ing, ranging from the leakage of inputs to labels. The most
threatening attack is the inversion attack, which attempts
to reconstruct original private data based on the received

intermediate feature. We summarize typical inversion attack
methods proposed in previous literature in Fig. 8. There are
two typical methods to do such an attack.

The first method is based on gradient descent. In this
type of attack, the adversary first constructs a randomized
input or an input with prior knowledge about the private
data. This input is then forwarded through a saved client
model on the server, and the reconstruction loss (usually
MSE loss) between the output from the randomized input
and the received intermediate features is minimized. After
several gradient descent iterations, the randomized input
optimizes to resemble the private data, which we consider
a reconstruction of private data. The attacker can launch
these attacks under a white-box setting [46] if it knows the
client model parameters; otherwise, it operates in a black-
box setting.

In the black-box setting, the first method is a query-based
attack [13] where the server sends specific designed inputs
to the clients and observes the corresponding intermediate
feature output. The second attack method, UnSplit [10],
does not require such queries. In the UnSplit attack method-
ology, a client model replica, denoted as M , is initialized
on the server along with a training sample represented as
x. The parameters of the guessed client model are desig-
nated as θ. Following the completion of the UnSplit at-
tack, the converged training samples are utilized as the de-
sired reconstruction of private data. During each iteration
of split learning, upon receiving intermediate features de-
noted as ĥ, the server feeds the training sample into the
guessed client model to obtain the output. Subsequently,
the server undergoes multiple inner iterations to update x
using ∇xLMSE(Mθ(x), ĥ), followed by several inner iter-
ations to update θ using ∇θLMSE(Mθ(x), ĥ). These steps
are iteratively performed until convergence is achieved.

The second type of inversion attack is based on training
an inverse network [13,23,43]. In this approach, the attacker
first trains an inverse network on a public dataset, which is
assumed to have a similar distribution as the private dataset.
The inverse network takes the intermediate features as inputs
and outputs the reconstructed private data. During the train-
ing of inverse networks, if it is under a white-box setting, the
attacker will directly use known client model weights to train
an inverse network. Otherwise, the attacker will first train an
estimated client model using known server model weights
on the same public dataset and then use this estimated client
model to train an inverse network.

Beyond leakage from the most threatening inversion at-
tack, other concerns exist about data privacy. Label leak-
age [20] assumes labels contain private information, allow-
ing the server to infer private labels by observing gradient
distributions returned to clients. However, this attack applies
only to binary classification in split learning. Inference at-
tacks [29] steal private data by sending attacker-designed

gradients to trick client models into returning features that
enable data reconstruction.

Another potential privacy risk involves text prompt leak-
age. As shown in Fig. 1, fine-tuning ControlNet requires the
server to input text prompts into the encoders and decoders of
both the diffusion model and control network. Consequently,
clients must upload their private text prompts to the server.
Although some may argue prompts are short, descriptive
texts with limited private content, the server could still use
known prompts to extract a training dataset [2]. Therefore,
clients must keep prompts confidential from the server.

C.2. Re-evaluating the Validity of Assumptions

C.2.1 The client model weights can be kept secretly.

In a white-box setting [46], the client model weights are
known. However, in real-world scenarios, the client does
not need to disclose the model weights to the server for split
learning to function. Even if an adversary manages to steal
the client model weights, clients can simply re-initialize the
model with different parameters. During the training process,
if the client model is trainable, its weights will change in each
iteration, making such an assumption invalid. The potential
vulnerability arises if the client model is pre-trained. Since
pre-trained weights are typically publicly available on the
Internet, such an attack could pose a threat.

C.2.2 The client can do split learning without providing
prior knowledge about private data to the server

In real-world split learning scenarios, the server only requires
the client model for training, operating without any knowl-
edge of the private data. In a black-box setting, it is assumed
that the adversary possesses prior knowledge about the pri-
vate data, enabling it to train an inverse network on public
data. For instance, Yao et al. [43] employed CelebA [22] as
the public dataset and LFWA [17] as the private dataset, both
containing human faces. However, in practical contexts, the
availability of a public dataset exhibiting such a correlation
with private datasets remains uncertain.

C.2.3 The client can reject the query request.

In a specific inversion attack, an adversary must query the
client model with samples supplied by the server [13]. How-
ever, in the standard split learning setup, clients do not need
to respond to any queries from the server; the split learning
still works. Therefore, to counter such an attack, clients can
simply reject all queries originating from the server. One
may argue that the server could construct these queries in a
manner resembling gradients, making them indistinguishable
to clients. However, with our structure that eliminates the
need for gradient back-sending, such concerns are mitigated.

Original Conditions Attacker's Reconstruction

Canny Lines Depth Layers

Figure 9. Privacy preserving: Higher distortion means better
privacy preservation. Randomly selected and non-cherry-picked
examples of reconstructed images by UnSplit attack.

Original Image Reconstruction ReconstructionConditions

Canny
Lines

HED
Lines

Depth
Layers

Figure 10. Privacy preserving: Higher distortion means better
privacy preservation. Randomly selected and non-cherry-picked
examples of reconstructed images by attacks optimizing MSE loss
under white-box setting.

In inference attacks [29], if the client model is trained
with gradients designed by the attacker, the resulting model
will inevitably experience a performance decline. Users can
easily detect this degradation in performance and cease using
the compromised server. Furthermore, our designed struc-
ture offers a straightforward defense against such attacks as
we do not need to train client models.

C.3. Re-evaluating the Effectiveness of Attacks

In summary, practical applications of split learning face
four threats. The first is a potential attack using gradient
descents in a white-box scenario, particularly if clients utilize
pre-trained weights. The second threat is an UnSplit attack,
while the third involves training inverse networks to infer
private data without prior knowledge of the data. The fourth
threat is the leakage of text prompts.

C.3.1 Metrics for Privacy-preserving Effectiveness

An honest-but-curious server aims to reconstruct private data
based on intermediate results. We evaluate the similarity
between reconstructed images and private images using peak

signal-to-noise ratio (PSNR) and the structural similarity
index measure (SSIM) [16]. Private images encompass users’
natural and conditional images. Both SSIM and PSNR utilize
image pixel values ranging from 0 to 255. PSNR assesses
image reconstruction quality, while SSIM gauges image
similarity. Lower SSIM and PSNR values signify decreased
image similarity, indicating improved privacy preservation.

C.3.2 Attack by Gradient Descents

In the original structure, since the server lacks knowledge
of the condition encoder weights, we resort to the UnSplit
attack method, following the procedure outlined in Un-
Split [10]. This attack involves updating the inputs based
on the mean squared error (MSE) loss between intermediate
results and outputs generated by randomly initialized inputs,
iterated over 100 loops. Subsequently, these inputs are used
to update the weights of the guessed client model, which
is also initialized randomly on the server, for another 100
loops. This process is repeated for a total of 100 outer loops.
We optimize the randomized model weights and inputs using
the Adam optimizer with a learning rate of 0.001. The loss
function utilized is L = LMSE + LL2 . For fine-tuning the
ControlNet, the dataset used is MS-COCO [21]. The suc-
cessful reconstruction of images using the UnSplit method
is illustrated in Fig. 9.

In the gradient back-sending free structure, the server pos-
sesses knowledge of the weights of the pre-trained condition
encoder. Consequently, the server can launch attacks in a
white-box setting. For each attack, we conduct 1000 itera-
tions using the Adam optimizer with a learning rate of 0.001
and MSE as the loss function. Regarding the reconstruction
of the original image with the output of the SD encoder block
1, the PSNR is 3.39, and the SSIM is 0.12. For reconstruct-
ing the condition image, the PSNR is 5.95, and the SSIM is
only 0.002. As depicted in Fig. 10, the reconstructed images
are far from recognizable. This ineffectiveness is attributed
to the pre-trained autoencoder’s complex model structure,
which incorporates dropout layers and batch normalization
layers. Between the two runs, even with identical inputs,
variations in outputs occur due to dropout layers. In dropout
layers, the operation of zeroing elements also nullifies the
gradient, making methods relying on gradient descent inef-
fective. Given the ineffectiveness of the white-box setting,
we do not need to test the black-box setting Unsplit attack.

C.3.3 Attack using Inverse Networks

For this attack, we examine two aspects: reconstructing the
original image and the condition image. Since the server
knows the diffusion model, it can directly use it to train an
inverse network. The key question is how similar private
and public datasets are. We choose MS-COCO as the public
dataset and CelebA [22] and ImageNet [4] as the private

Table 4. The inverse networks for inversion attacks have two types: Type 1 reconstructs the original image; Type 2 reconstructs the condition
image. Type 1&2 denotes layers used in both structures. Padding size is 1 and kernel size is 3.

Input Operator Stride #Out Structure Activation

642 × 320 Conv2d 1 320 Type 1 SiLU
642 × 320 Conv2d, 1 256 Type 1 SiLU
642 × 256 Upsample 2 96 Type 1 SiLU

642 × 4 Upsample 2 96 Type 2 SiLU

1282 × 96 Conv2d 1 96 Type 1&2 SiLU
1282 × 96 Upsample 2 32 Type 1&2 SiLU
2562 × 32 Conv2d 1 32 Type 1&2 SiLU
2562 × 32 Upsample 2 16 Type 1&2 SiLU
5122 × 16 Conv2d 1 16 Type 1&2 SiLU
5122 × 16 Conv2d 1 3 Type 1&2 Sigmoid

Original Images Reconstruction

CelebA CelebAImageNet ImageNet

Figure 11. Privacy preserving: Higher distortion means better
privacy preservation. Randomly selected and non-cherry-picked ex-
amples of reconstructed images from the outputs of the SD Encoder
Block 1 using an inverse network.

datasets. MS-COCO and ImageNet contain images of var-
ious categories, while CelebA comprises over 200K faces
from more than 10K celebrities.

The inverse network is trained on the public dataset and
then evaluated on the private dataset. We use the AdamW
optimizer with a learning rate of 1× 10−5, a batch size of
8, and train it for 7.5× 104 iterations. The structure of the
inverse network is shown in Tab. 4. As illustrated in Fig. 11,
this attack is ineffective on both datasets. For CelebA, the
PSNR is 5.87 and SSIM is 0.73, while for ImageNet, the
PSNR is 6.56 and SSIM is 0.71. The reconstruction results
are barely recognizable as the original private images.

Secondly, for the reconstruction of the condition image,
if we employ our proposed structure, the server can directly
train the inverse network. However, in the original struc-
ture, the server uses its model weights to train an estimated
client model on the public dataset and then trains the inverse
network. Unfortunately, this attack is effective for both struc-
tures with condition images. We will present the results and
defense mechanisms in the following sections.

C.4. Summary

We summarize potential split learning attacks in Tab. 5
and their effectiveness. The remaining effective method is
inverse network-based attacks for reconstructing condition
images. Another valid threat is text prompt leakage. Thus,
in this paper, we emphasize defending against these two
threats.

D. Details about Experimental Settings in Sec. 5

Execution Environment. Our experiments are conducted
on a server with A100 GPUs. We use NVIDIA A4500 GPUs
as the client devices.

Dataset. The MS-COCO dataset contains over 120K
images with proper prompts. The model is fine-tuned over
MS-COCO for 25000 iterations with a batch size of 4. The
remaining settings is the same as default implementation
of ControlNet [45] where we use AdamW optimizer with
learning rate of 1× 10−5. The noise coefficient λt is 0. We
use the MS-COCO validation set with over 5000 images to
evaluate the quality of generated images.

Other Settings. We have 50 clients in total and each
has 1000 training samples. The number of clients will effect
efficiency and scalability but will not effect image generation
performance or privacy-preserving ability. Since the main
focus of this paper is on the latter two aspects, we do not
particularly study other settings. The resolution of the input
and generate images is 512× 512. The images are generated
with the same random seed. The settings for evaluating
privacy against reconstructing private data is the same as in
Appendix C.

Table 5. Summary of existing attacks in split learning, assessing validity and effectiveness in the diffusion model scenario, using ✓ for
successful data reconstruction and × otherwise; − denotes N/A.

Original structure Our structure

Valid? Raw image Condition image Valid? Raw image Condition image

Gradient descent
White-box ✓ × − ✓ × ×

Query-based × − − × − −
Black-box ✓ − × × − −

Inverse network
White-box ✓ × − ✓ × ✓
Black-box ✓ − ✓ × − −

Label leakage − Invalid: only applicable to binary image classification.

Inference attack − Invalid: detectable as the model cannot generate the correct results.

Text prompt leakage − The assumption is valid.

(a) Canny (b) Sribble (c) Segmentation

Figure 12. Examples of different conditions.

E. Examples of Different Conditions

Fig. 13 shows the examples of three different conditions:
canny, segmentation, and scribble, studied in the paper.

F. More Details about Implementation

For our and other privacy-preserving methods, we im-
plement them with our designed gradient sending-back free
structure. For (ϵ,∆)-LDP mechanism, ∆ = 1× 10−4 and
we calculate that α ≈ 0.16.

G. Hyperparameter Tuning for Our Privacy-
Preserving Methods

Before we choose the k and beta0 for our methods, we
try to use different values and compare their performance
regarding the quality of image generation. In Remark 4.2,
we can set different privacy budgets with proper k and β0.
In Fig. 13, we change privacy budgets by setting different
scheduling parameters k and β0 respectively. In the default
setting of our method, the privacy budget is 8. We try the
other two cases of setting privacy budgets as 0.3 and 2. As
shown in Fig. 13, our method can still generate images of
good quality. However, for the baseline methods, they fail to

(a) k, ϵs = 2 (b) k, ϵs = 0.3 (c) β0, ϵs = 2 (d) β0, ϵs = 0.3

Figure 13. Randomly selected and non-cherry-picked examples
of generated images varying privacy budget with different k and
β0 in our method (Ours++). k and β0 indicate that the privacy
budgets change by altering only k or β0 respectively compared to
the default settings.

generate good images and protect privacy when they use the
same privacy budgets of 0.3 and 2.

H. More Visualization of Image Generation

Fig. 15 and Fig. 16 show more visualization result of
image generation when different privacy-preserving methods
are applied.

I. More Visualization of Reconstruction

Fig. 17 show more visualization results of reconstructed
images by attacks using inverse networks, where different
privacy-preserving methods are applied.

J. Discussion

In this paper, we resolve the question of how we can train
ControlNet and diffusion models while keeping users’ data
privacy. Besides the aspect of preserving privacy, there are
other issues worth studying in production level split learning
with ControlNet and stable diffusion. In this paper, we focus
on ControlNet and stable diffusion while in future work,

(a) Condition (b) Centralized (c) SL (d) Ours (e) Ours+t (f) Ours+c (g) Ours++ (h) LDP rr

(i) LDP 0.1 (j) LDP 0.3 (k) LDP 0.5 (l) Add 1 (m) Add 50 (n) Mixup (o) PS (p) FedAvg

Figure 14. Image generation: Images of higher quality means better. Randomly selected and non-cherry-picked examples of generated
images with the given condition of Segmentation under different methods. The text prompt is: a motorcycle.

(a) Condition (b) Centralized (c) SL (d) Ours (e) Ours+t (f) Ours+c (g) Ours++ (h) LDP rr

(i) LDP 0.1 (j) LDP 0.3 (k) LDP 0.5 (l) Add 1 (m) Add 50 (n) Mixup (o) PS (p) FedAvg

Figure 15. Image generation: Images of higher quality means better. Randomly selected and non-cherry-picked examples of generated
images with the given condition of Canny under different methods. The text prompt is: cute toys for kids.

(a) Condition (b) Centralized (c) SL (d) Ours (e) Ours+t (f) Ours+c (g) Ours++ (h) LDP rr

(i) LDP 0.1 (j) LDP 0.3 (k) LDP 0.5 (l) Add 1 (m) Add 50 (n) Mixup (o) PS (p) FedAvg

Figure 16. Image generation: Images of higher quality means better. Randomly selected and non-cherry-picked examples of generated
images with the given condition of Segmentation under different methods. The text prompt is: dinner with food in blue.

we hope we can extend our methods to other fine-tuning
methods for diffusion models such as T2I-Adapters etc.

Another challenging question is how we can keep users’
data privacy during the inference stage after deploying
trained ControlNet and diffusion models. The inference

process is different from the training. A trivial solution is
to run the inference completely on the edge device, which
needs about 7.5GB of memory. The memory requirement is
much less than that of training, which is feasible. However,
maybe not all clients have enough memory. It is a challenge

(a) Canny (b) SL (c) Ours (d) Ours++

(e) LDP rr (f) LDP 0.1 (g) LDP 0.3 (h) LDP 0.5

(i) Add 1 (j) Add 50 (k) Mixup (l) PS

Figure 17. Privacy preserving: Higher distortion means better
privacy preservation. Randomly selected and non-cherry-picked
examples of reconstructed condition images by inverse network
based attacks when fine-tuning the ControlNet with condition canny.
The private dataset is CelebA.

that how we can still keep user data privacy if we deploy a
ControlNet across the clients and the server. From related
work, we can see large efforts are being put into privacy-
preserving inference in split learning. It is worth studying
whether these methods are helpful during the inference stage.

In this paper, the target is towards privacy-preserving
split learning with ControlNet and diffusion model. In a
broader research topic, one question is how we can safely
do split learning. In such a case, we may not assume every
client is honest, which means some clients are malicious
and not sending the correct intermediate features. To harm
the interests of other clients, some clients may do backdoor
attacks or adversarial attacks, diminishing the utility of the
fine-tuned ControlNet and diffusion model.

In our experiments, we deploy split learning with 50
clients. We can increase the number of clients if we want,
but since Ts is much larger than Tc, the whole training time
is the same. Therefore, we do not increase the number. On
the production level, it is possible that there are more than
50 clients. With our methods, we can still train ControlNet
with split learning over them while preserving data privacy.
A minor issue is that since the clients only need to do infer-
ence, they may send intermediate features of large amounts
continuously and simultaneously. It is worth studying how
the server deals with a large scale of requests simultaneously.
We can expand the client number to hundreds or thousands
to evaluate the scalability.

	. Introduction
	. Background and Related Work
	. Diffusion Model and ControlNet
	. Decentralized Training of ControlNet
	. Privacy Leakage in Split Learning
	. Privacy Protection in Split Learning

	. Speeding Up Fine-Tuning ControlNet
	. Fine-Tuning ControlNet with Split Learning
	. Accelerating by Not Sending Gradients Back

	. Privacy-Preserving ControlNet Fine-Tuning
	. Threat Modeling
	. Attacking Methods
	. Local Differential Private Timestep Sampling
	. Noise-Confounding Activation Function
	. Prompt-Hiding Fine-Tuning

	. Evaluation
	. Experimental Settings
	. Implementation
	. Comparison Results
	Maintenance of Image Generation Performance
	Privacy-preserving Ability

	. Concluding the Remarks
	. Details about Experimental Settings in sec:ours
	. Alternative Distributed Training Paradigms
	. Re-evaluating Potential Attacks
	. Potential Threats in Split Learning
	Complementary about Threat Modeling
	Complementary about Attacking Methods

	. Re-evaluating the Validity of Assumptions
	The client model weights can be kept secretly.
	The client can do split learning without providing prior knowledge about private data to the server
	The client can reject the query request.

	. Re-evaluating the Effectiveness of Attacks
	Metrics for Privacy-preserving Effectiveness
	Attack by Gradient Descents
	Attack using Inverse Networks

	. Summary

	. Details about Experimental Settings in sec:evaluation
	. Examples of Different Conditions
	. More Details about Implementation
	. Hyperparameter Tuning for Our Privacy-Preserving Methods
	. More Visualization of Image Generation
	. More Visualization of Reconstruction
	. Discussion

