
Federated Model Search via Reinforcement Learning

Dixi Yao, Lingdong Wang, Jiayu Xu, Liyao Xiang,

Shuo Shao, Yingqi Chen, Yanjun Tong

John Hopcroft Center, Shanghai Jiao Tong University

BACKGROUND

Distributed machine learning

Local machine learning application

Face Recognition Voice Assistant Product Recommendation

Cloud

Personal Information

Using Federated Learning!

Computational parties collaboratively learn a shared model

while keeping all training data local

Problem of Predefined Model

Some Serious Problem

• Fail to converge

• Sub-optimal solution

• Complicated

• Heterogeneous

• Non i.i.d. dataset

Local Data in real world

Predefined model structure

ResNet

VGG

MobileNet

…

Using Neural Architecture Search(NAS)!

• Gradient based

• Evolutionary algorithm

• Reinforcement-learning

based

Decentralized data

Centralized

Data

Distributed devices

Heavy

And

Time-cost

Besides Computation

Communication also matters

1. Network Context Changes

2. Connection loss or blocked

➢ Hard Synchronized SGD

• Low efficiency if some connection blocked

• Permanent blocking if some connection lost

➢ Asynchronized SGD

• Update on super-net weights and the global

search controller can hardly be parallelized

Our Contribution

• An efficient RL-based federated

model search algorithm

• adaptively distribute sub-models

according to the transmission

conditions.

• Develop a soft synchronization

scheme with delay compensation

→ achieve low communication and

computation costs at the participant

end.

→ speed up convergence

→fully utilize the stale update to

improve searching performance

RL-BASED FEDERATED MODEL SEARCH

Why Reinforcement Learning?

Evolutionary method : Low efficiency of evolutionary method

Gradient-based method: Send whole large super-net to each participant

Reinforcement Learning-based method

• Each FL participant as agent

• RL agent observes states and performs action

• Super-net updates the policy to maximize the reward function

Natural advantage:

• Small sampled sub-nets →Light Weight

• Sampling models individually →Efficient

• Computing reward parallel →Efficient

Problem Formulation

An optimization Problem : total number of participants

: local participant

: local dataset of participant

: architecture parameter

: model weights

A Markov Decision Process

State: the structure of the model

Policy: parameterized by

Action: generate sub-models and train them on

Reward: accuracy loss over the training data

Design Space:

generate a mask for a

federated participant [0,0,0,0,1,0,0,0]

put edges together

Optimization

Two challenges

• fail to adapt to non i.i.d.s data or overfitting

• optimize and at the same time

→ regular SGD + FedAvg

FedAvg: B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

Efficient Learning of Deep Networks from Decentralized Data,” in Proceedings of the 20th International

Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, A.

Singh and J. Zhu, Eds., vol. 54. Fort Lauderdale, FL, USA: PMLR, 4 2017, pp. 1273–1282.

→ Gather rewards + policy net

Overall Architecture

Step 1: sample sub-models:

Step 2: calculate rewards and sub-models weights individually

Step 3: synchronize and update and

Step 4: back to step 1 unless converged

Adaptive Transmission

Participant under worse network conditions get smaller sub-models

Dataset: Hooft J , Petrangeli S , Wauters T , et al. HTTP/2-Based Adaptive Streaming of HEVC Video

Over 4G/LTE Networks[J]. IEEE Communications Letters, 2016, 20(11):2177-2180.

DELAY-COMPENSATED FEDERATED

MODEL SEARCH

Delay-Compensated Federated Model Search

• Only wait for most

• Ignore the stragglers for the time being

However, both architecture parameters and models’ weights

can be stale in the distributed training

Wait for all participant

round

slow participant server
normal participant

normal participant

round

slow participant server : but I need ？

unavailable Stale gradient

What about ?

EXPERIMENT

Implementation

Dataset: Cifar10, Cifar100, SVHN

Non i.i.d. Data Generation: Dirichlet distribution

Server: Nvidia GTX 1080Ti

Clients: Nvidia Jetson TX2 / Nvidia GTX 1080 Ti

Communication Platform: Pytorch Distributed RPC

Four Phases: Warmup, searching, training from scratch, evaluating

Accuracy

• Competitive to centralized NAS

• Better performance than other

FLNAS

• Much smaller model size

Efficiency

Delay Compensation
Fresh: hard synchronization

Ours: delay compensation

Use: directly use stale data

Throw: throw all stale data away

Comparative Performance as

fresh, but solving the problem of

stragglers

Emulated Running time

Convergence of searched model

Faster convergence and higher accuracies on non i.i.d data

Number of Participants and Transferability

• more participants → less fluctuation

• Almost the same accuracy performance

• Performs well in large-scale settings

perform over a small dataset

and later transfer the model

to a larger dataset.

Conclusion

• A reinforcement learning based

federated model search

Adaptively distributes the training

tasks of sub-models to participants,

• A soft synchronization scheme and

delay-compensated optimizer

• Abundant experiments,

→Automatically search for a best-

fit model

→ Highly efficient in

communication and computation.

→Alleviate the staleness

→Outperform the state-of-the-art

methods in terms of efficiency

and model accuracy, particularly

on non-i.i.d. data.

Thanks

