

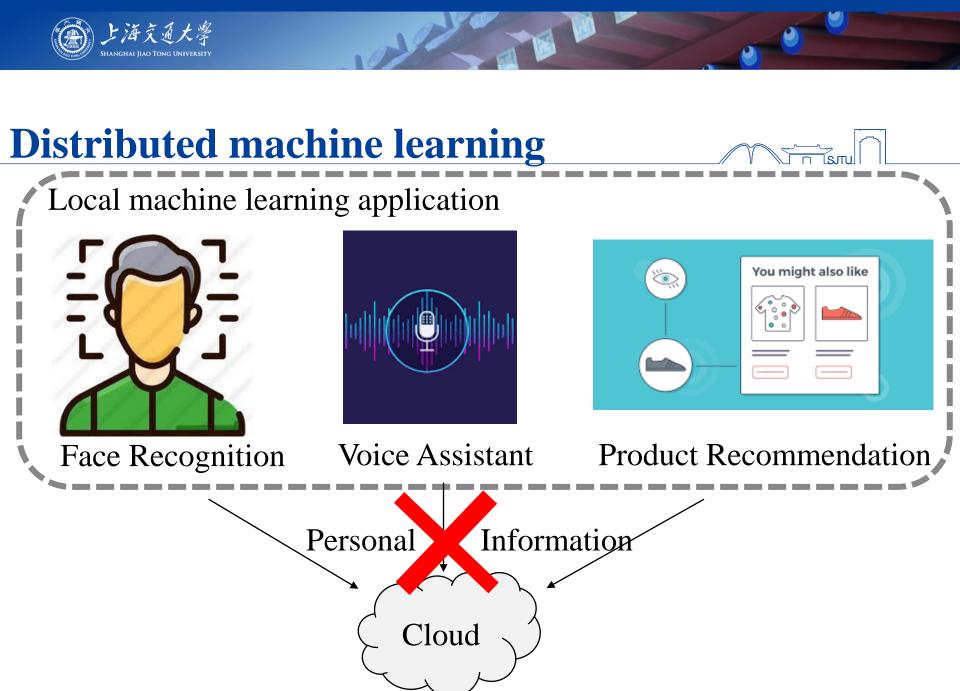
Federated Model Search via Reinforcement Learning

Dixi Yao, Lingdong Wang, Jiayu Xu, Liyao Xiang, Shuo Shao, Yingqi Chen, Yanjun Tong

John Hopcroft Center, Shanghai Jiao Tong University

Shanghai Jiao Tong University

BACKGROUND



Using Federated Learning!



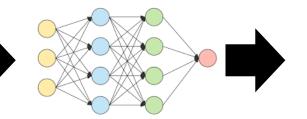
Computational parties collaboratively learn a shared model while keeping all training data local

Problem of Predefined Model

Local Data in real world

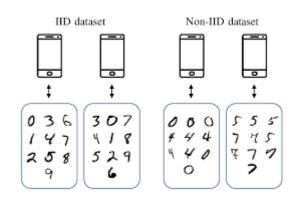
- Complicated
- Heterogeneous
- Non i.i.d. dataset

Predefined model structure



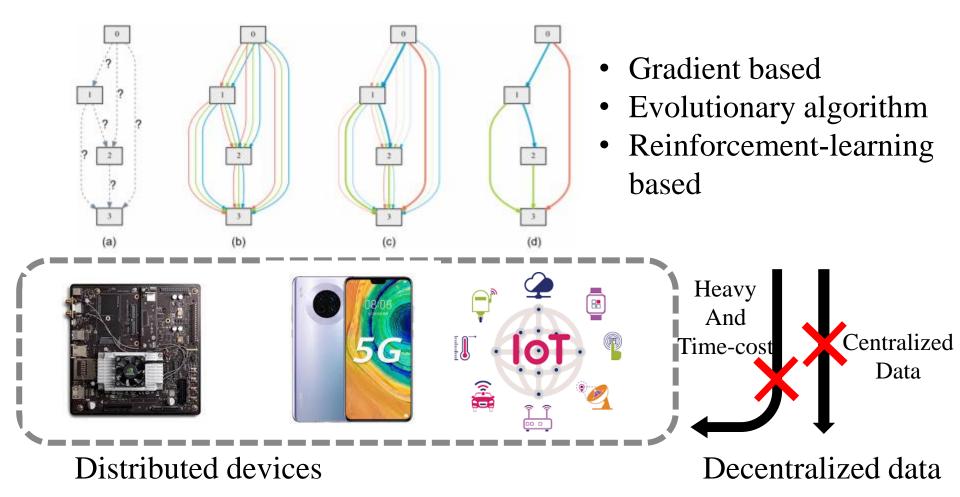
Some Serious Problem

- Fail to converge
- Sub-optimal solution



ResNet VGG MobileNet

Using Neural Architecture Search(NAS)!



Besides Computation

- Communication also matters
 - 1. Network Context Changes
 - 2. Connection loss or blocked
 - Hard Synchronized SGD
 - Low efficiency if some connection blocked
 - Permanent blocking if some connection lost Asynchronized SGD
 - Update on super-net weights and the global search controller can hardly be parallelized

Our Contribution

- An efficient RL-based federated \rightarrow achieve low communication and model search algorithm
 - computation costs at the participant end.
- adaptively distribute sub-models \rightarrow speed up convergence according to the transmission conditions.
- Develop a soft synchronization \rightarrow fully utilize the stale update to scheme with delay compensation improve searching performance

RL-BASED FEDERATED MODEL SEARCH

Why Reinforcement Learning?

Evolutionary method : Low efficiency of evolutionary method Gradient-based method: Send whole large super-net to each participant

Reinforcement Learning-based method

- Each FL participant as agent
- RL agent observes states and performs action
- Super-net updates the policy to maximize the reward function

Natural advantage:

- Small sampled sub-nets \rightarrow Light Weight
- Sampling models individually \rightarrow Efficient
- Computing reward parallel \rightarrow Efficient

Problem Formulation

An optimization Problem $\underset{\alpha,\theta}{\text{minimize}} \sum_{k=1}^{K} \sum_{i \in \mathbb{D}_{k}} \mathcal{L}(x_{i}, y_{i}; \alpha, \theta)$

K: total number of participants

- *k* : local participant
- \mathbb{D}_k : local dataset of participant
- α : architecture parameter
 -) : model weights

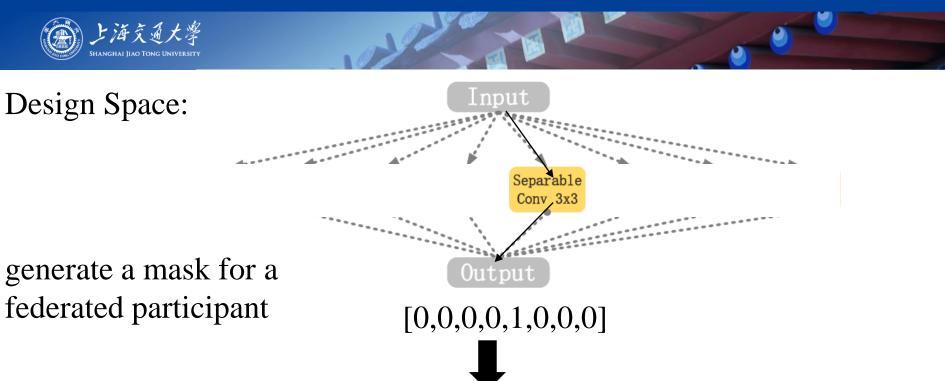
A Markov Decision Process

State: the structure of the model θ

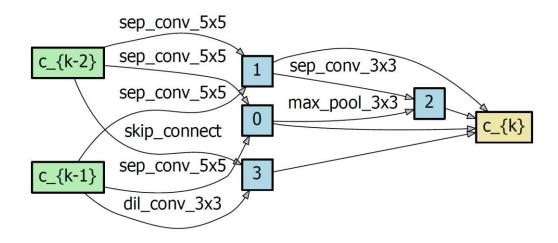
Policy: parameterized by α

Action: generate sub-models and train them on \mathbb{D}_k

Reward: accuracy loss over the training data



put edges together



Optimization

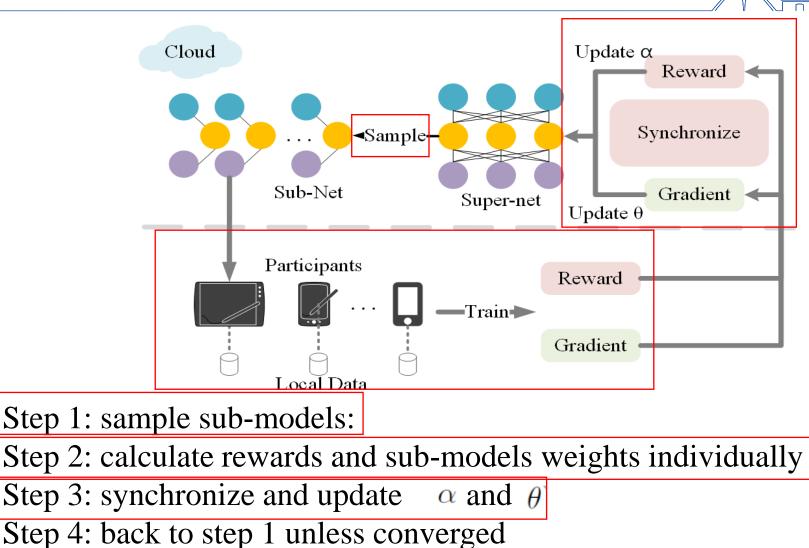
Two challenges

- fail to adapt to non i.i.d.s data or overfitting
- optimize α and θ at the same time

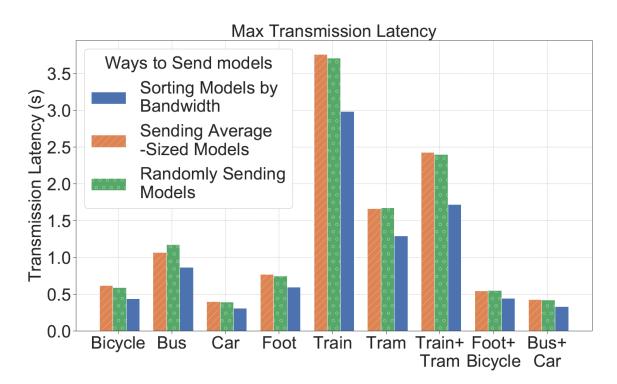
 $\begin{array}{c} \theta \\ \bullet \end{array} \rightarrow \text{regular SGD} + \text{FedAvg} \\ \alpha \\ \bullet \end{array} \rightarrow \text{Gather rewards} + \text{policy net} \end{array}$

FedAvg: B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-Efficient Learning of Deep Networks from Decentralized Data," in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54. Fort Lauderdale, FL, USA: PMLR, 4 2017, pp. 1273–1282.

Overall Architecture



Adaptive Transmission



Participant under worse network conditions get smaller sub-models

Dataset: Hooft J, Petrangeli S, Wauters T, et al. HTTP/2-Based Adaptive Streaming of HEVC Video Over 4G/LTE Networks[J]. IEEE Communications Letters, 2016, 20(11):2177-2180.

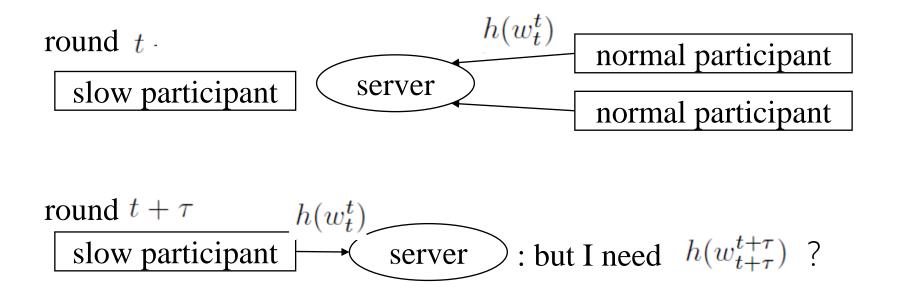
DELAY-COMPENSATED FEDERATED MODEL SEARCH

Delay-Compensated Federated Model Search

Wait for al participant

- Only wait for most
- Ignore the stragglers for the time being

However, both architecture parameters and models' weights can be stale in the distributed training



unavailable

$$h(w_{t+\tau}^{t+\tau}) \approx h(w_{t+\tau}^{t})$$

$$\approx h(w_{t}^{t}) + \lambda h(w_{t}^{t}) \odot h(w_{t}^{t}) \odot (w_{t+\tau}^{t} - w_{t}^{t})$$

$$\nabla_{\alpha_{t+\tau}} \log(p(g_{t+\tau}^{m})) \approx \nabla_{\alpha_{t}} \log(p(g_{t}^{m})) + \lambda \nabla_{\alpha_{t}} \log(p(g_{t}^{m})) \odot \nabla_{\alpha_{t}} \log(p(g_{t}^{m})) \odot (\alpha_{t+\tau} - \alpha_{t})$$

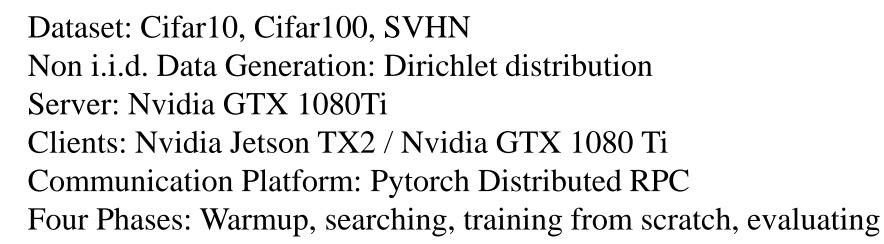
What about
$$\nabla_{\alpha} J(\alpha)$$
?

$$= \frac{1}{M} \sum_{m=1}^{M} R(w_{t+\tau}^{t+\tau}) \nabla_{\alpha_{t+\tau}} \log(p(g_{t+\tau}^m))$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} R(w_t^t) \nabla_{\alpha_{t+\tau}} \log(p(g_{t+\tau}^m)),$$

EXPERIMENT

Implementation



Name	Value	Name	Value
batch size	256	# participant (K)	10
learning rate (θ)	0.025	learning rate (P3, centralized)	0.025
momentum (θ)	0.9	momentum (P3, centralized)	0.9
weight decay (θ)	0.0003	weight decay (P3, centralized)	0.0003
gradient clip (θ)	5	gradient clip (P3, centralized)	5
learning rate (α)	0.003	learning rate (P3, FL)	0.1
weight decay (α)	0.0001	momentum (P3, FL)	0.5
gradient clip (α)	5	weight decay (P3, FL)	0.005
baseline decay (α)	0.99	# warm-up steps	10000
cutout [28]	16	# searching steps	6000
random clip	4	# training epochs	600
random horizontal flapping	0.5	# FL training steps	6000

DEFAULT EXPERIMENTAL SETTINGS

Accuracy

CENTRALIZED EVALUATION ACCURACIES OF SEARCHED MODELS ON CIFAR10

Method	Error(%)	Param(M)	Strategy	FL	NAS	
RL-I	oased Federa	ited Model Se	arch			
DARTS (1st order) [7]	3.00	3.3	grad		\checkmark	
DARTS (2nd order)	2.81	3.3	grad		\checkmark	
ENAS [13]	2.89	4.6	RL		\checkmark	
Ours	2.62	3.6	RL	\checkmark	\checkmark	
Delay-Compensated Federated Model Search						
use (70% staleness)	2.84	3.2	RL	\checkmark	\checkmark	
throw (70% staleness)	3.00	4.0	RL	\checkmark	\checkmark	
Ours(70% staleness)	2.72	3.2	RL	\checkmark	\checkmark	
Ours (10% staleness)	2.59	2.7	RL	\checkmark	\checkmark	

FEDERATED EVALUATION ACCURACIES OF SEARCHED MODELS ON NON-I.I.D. DATASETS

Method	Error(%)	Param(M)	Strategy	NAS			
Non-i.i.d. CIFAR10							
FedAvg * [20]	22.40	58.2	hand				
FedNAS [17]	18.76	4.2	grad	\checkmark			
EvoFedNAS(big) [16]	18.73	-	evol	\checkmark			
EvoFedNAS(small)	21.06	-	evol	\checkmark			
Ours (non i.i.d.)	18.56	3.9	RL	\checkmark			
	Non-i.i.d.	SVHN					
FedAvg *	10.78	58.2	hand				
Ours (non i.i.d.)	10.23	2.5	RL	\checkmark			

Federated Evaluation Accuracies of Searched Models on ${\rm CIFAR10}$

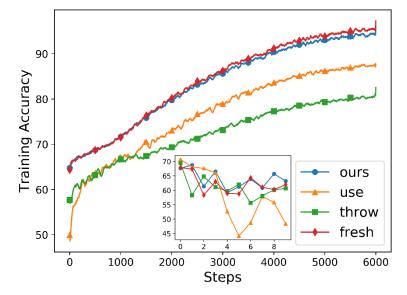
Method	Error(%)	Param(M)	Strategy	FL	NAS		
RL-based Federated Model Search							
FedAvg [20]	15.00	-	hand	\checkmark			
EvoFedNAS(big) [16]	13.32	-	evol	\checkmark	\checkmark		
EvoFedNAS(small)	16.64	-	evol	\checkmark	\checkmark		
Ours	13.36	3.6	RL	\checkmark	\checkmark		
Delay-Compensated Federated Model Search							
Ours (10% staleness)	13.25	2.7	RL	\checkmark	\checkmark		

- Competitive to centralized NAS
- Better performance than other FLNAS
- Much smaller model size

^{*} Using ResNet152 [29] as the base model.

Efficiency

Delay Compensation



Fresh: hard synchronization Ours: delay compensation Use: directly use stale data Throw: throw all stale data away

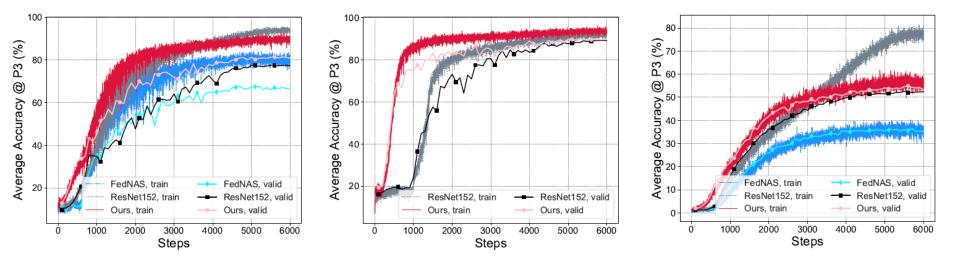
Comparative Performance as fresh, but solving the problem of stragglers

Emulated Running time

SEARCH TIME ON CIFAR10

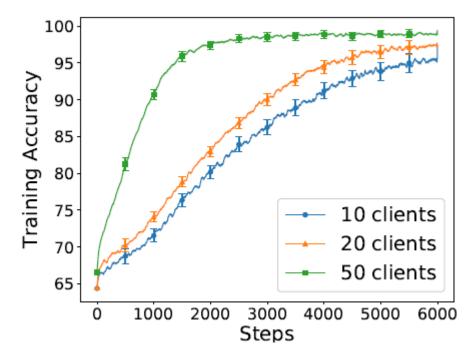
Method	Search Time (hours)	Sub-net Size (M)
FedNAS * [17]	<5	1.93 1
EvoFedNAS [16]	16.1	4.23 1
Ours (1080Ti)	<2.5	0.27
Ours (TX2)	<10	0.27

Convergence of searched model



Faster convergence and higher accuracies on non i.i.d data

Number of Participants and Transferability



RESULTS OF TRANSFERRING FROM I.I.D. CIFAR10 TO I.I.D. CIFAR100		Results of Transferring from Non-1.1.d. CIFAR10 to Non-1.1.d. CIFAR100			
Method	Acc(%)	Para(M)	Method	Acc(%)	Para(M)
DARTS	82.99	3.4	FedAvg	52.57	58.2
FedNAS	80.28	4.2	FedNAS	36.01	4.2
Ours	83.31	3.6	Ours	54.63	3.9

- more participants \rightarrow less fluctuation
- Almost the same accuracy performance
- Performs well in large-scale settings

perform over a small dataset and later transfer the model to a larger dataset.

Conclusion

- A reinforcement learning based federated model search
- Adaptively distributes the training tasks of sub-models to participants,
- A soft synchronization scheme and →Alleviate the staleness delay-compensated optimizer
- Abundant experiments,

→Outperform the state-of-the-art methods in terms of efficiency and model accuracy, particularly on non-i.i.d. data.

→Automatically search for a bestfit model

→ Highly efficient in communication and computation.

Thanks

