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BACKGROUND



Distributed machine learning

Local machine learning application

Face Recognition Voice Assistant Product Recommendation

Cloud

Personal        Information



Using Federated Learning!

Computational parties collaboratively learn a shared model 

while keeping all training data local



Problem of Predefined Model

Some Serious Problem

• Fail to converge

• Sub-optimal solution

• Complicated

• Heterogeneous

• Non i.i.d. dataset

Local Data in real world

Predefined model structure

ResNet

VGG

MobileNet

…



Using Neural Architecture Search(NAS)!

• Gradient based

• Evolutionary algorithm

• Reinforcement-learning 

based

Decentralized data

Centralized 

Data

Distributed devices

Heavy

And

Time-cost



Besides Computation

Communication also matters

1. Network Context Changes

2. Connection loss or blocked

➢ Hard Synchronized SGD

• Low efficiency if some connection blocked

• Permanent blocking if some connection lost

➢ Asynchronized SGD

• Update on super-net weights and the global 

search controller can hardly be parallelized



Our Contribution

• An efficient RL-based federated 

model search algorithm

• adaptively distribute sub-models 

according to the transmission 

conditions.

• Develop a soft synchronization 

scheme with delay compensation

→ achieve low communication and                  

computation costs at the participant 

end.

→ speed up convergence

→fully utilize the stale update to 

improve searching performance



RL-BASED FEDERATED MODEL SEARCH



Why Reinforcement Learning?

Evolutionary method : Low efficiency of evolutionary method

Gradient-based method: Send whole large super-net to each participant

Reinforcement Learning-based method

• Each FL participant as agent

• RL agent observes states and performs action

• Super-net updates the policy to maximize the reward function

Natural advantage:

• Small sampled sub-nets →Light Weight

• Sampling models individually →Efficient

• Computing reward parallel →Efficient



Problem Formulation

An optimization Problem : total number of participants

: local participant

: local dataset of participant

: architecture parameter

: model weights

A Markov Decision Process

State: the structure of the model

Policy: parameterized by

Action:  generate sub-models and train them on

Reward: accuracy loss over the training data



Design Space:

generate a mask for a 

federated participant [0,0,0,0,1,0,0,0]

put edges together



Optimization

Two challenges

• fail to adapt to non i.i.d.s data or overfitting

• optimize       and at the same time

→ regular SGD + FedAvg

FedAvg: B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

Efficient Learning of Deep Networks from Decentralized Data,” in Proceedings of the 20th International 

Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, A. 

Singh and J. Zhu, Eds., vol. 54. Fort Lauderdale, FL, USA: PMLR, 4 2017, pp. 1273–1282.

→ Gather rewards + policy net



Overall Architecture

Step 1: sample sub-models:

Step 2: calculate rewards and sub-models weights individually

Step 3: synchronize and update        and

Step 4: back to step 1 unless converged  



Adaptive Transmission

Participant under worse network conditions get smaller sub-models

Dataset: Hooft J ,  Petrangeli S ,  Wauters T , et al. HTTP/2-Based Adaptive Streaming of HEVC Video 

Over 4G/LTE Networks[J]. IEEE Communications Letters, 2016, 20(11):2177-2180.



DELAY-COMPENSATED FEDERATED 

MODEL SEARCH



Delay-Compensated Federated Model Search

• Only wait for most

• Ignore the stragglers for the time being

However, both architecture parameters and models’ weights 

can be stale in the distributed training

Wait for all participant

round

slow participant server
normal participant

normal participant

round

slow participant server : but I need                  ？



unavailable Stale gradient

What about                 ?           



EXPERIMENT



Implementation

Dataset: Cifar10, Cifar100, SVHN

Non i.i.d. Data Generation: Dirichlet distribution

Server: Nvidia GTX 1080Ti

Clients: Nvidia Jetson TX2 / Nvidia GTX 1080 Ti

Communication Platform: Pytorch Distributed RPC

Four Phases: Warmup, searching, training from scratch, evaluating



Accuracy

• Competitive to centralized NAS

• Better performance than other 

FLNAS

• Much smaller model size



Efficiency

Delay Compensation
Fresh: hard synchronization

Ours: delay compensation

Use: directly use stale data

Throw: throw all stale data away

Comparative Performance as 

fresh, but solving the problem of 

stragglers

Emulated Running time



Convergence of searched model

Faster convergence and higher accuracies on non i.i.d data



Number of Participants and Transferability

• more participants → less fluctuation

• Almost the same accuracy performance

• Performs well in large-scale settings

perform over a small dataset 

and later transfer the model 

to a larger dataset.



Conclusion

• A reinforcement learning based 

federated model search

Adaptively distributes the training 

tasks of sub-models to participants, 

• A soft synchronization scheme and 

delay-compensated optimizer 

• Abundant experiments,

→Automatically search for a best-

fit model

→ Highly efficient in 

communication and computation.

→Alleviate the staleness

→Outperform the state-of-the-art 

methods in terms of efficiency 

and model accuracy, particularly 

on non-i.i.d. data.



Thanks


