

Privacy-Preserving Split Learning via Patch Shuffling over Transformers

Dixi Yao, Liyao Xiang, Hengyuan Xu, Hangyu Ye, Yingqi Chen

John Hopcroft Center, Shanghai Jiao Tong University, China

Sept., 2022
饮水思源·爱国荣

Background

New Computational Paradigm

Is Split learning perfect?

Challenge 1 Unprotected intermediate results : leak privacy of input ! 1) (2

Challenge 2

2) Protect label privacy :

Labels should not leave cloud if labels are proprietary

Facial images: private on edges

Forward loop: Forward loop:

intermediate features
Backward loop:
error gradients

Backward loop:

error gradients

Identity: belongs to a proprietary enterprise database Bob

Is Split learning perfect?

Challenge 1 Unprotected intermediate results : Leak privacy of input ! 1) (2 **Challenge 3**

Privacy in training

Leakage would occur in each iteration

2) Protect label privacy :

Labels should not leave cloud if labels are proprietary

Protecting training data privacy is hard

Inference: one-time transmission

Training: multiple forward & backward rounds

Privacy should be guaranteed throughout training!

Add Noise

Adding Gaussian noise barely works

Adversarial learning based methods:

Protection is effective only at convergence

Is Split learning perfect?

Challenge 1 Unprotected intermediate results : Leak privacy of input ! 1) (2 **Challenge 2** 2) Protect label privacy : Labels should not leave cloud if labels are proprietary **Challenge 3** Privacy in training Leakage would occur in each iteration **Challenge 4** Practicality in deployment

Tradeoff: Privacy, Efficiency & Accuracy

DNN on thin edge devices:

Low in efficiency --- cryptographic tools including homomorphic encryption, multi-party computation

High training performance:

Sacrifice of accuracy --- differential privacy

Threat Model & Methodology

Objective: minimize task loss and maximize attacker reconstruction loss

White-box attack Black-box attack Adaptive attack

Attacker's prior:

- ✓ Intermediate features
- ✓ Model weights

Attacker's prior:

- ✓ Intermediate features
- ✓ Auxiliary datasets
- × Model weights

Similar to Black-box

Use features from multiple rounds

Attacker's prior:

- ✓ multiple features
- ✓ Auxiliary datasets
- × Model weights

Transformer has shown **a superior accuracy**

ImageNet-1k (from paperswithcode.com)

Shuffling Invariance Robustness against Patch Dropping

Images from Naseer, Muhammad Muzammal, Kanchana Ranasinghe, Salman H. Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. "Intriguing properties of vision transformers." Advances in Neural Information Processing Systems 34 (2021).

Definition 1. (Neighbouring Permutations) We divide a single instance into N patches, and the permutations of these N patches constitute S. Any two permutation σ , $\sigma' \in S$ are defined to be neighboring.

Definition 2. (σ -privacy) Given private dataset X and a set of permutations S, a randomized mechanism $A : f(X) \mapsto V$ is σ -private if for all $x \in X$, neighbouring permutations σ and σ' and any $z \in \mathcal{V}$, we have

$$
\Pr[\mathcal{A}(\sigma(f(x))) = z] = \Pr[\mathcal{A}(\sigma'(f(x))) = z]. \tag{6}
$$

Each permutation has the same likelihood to generate z.

Patch Shuffling

Batch Shuffling VS Spectral Shuffling

Batch Shuffling: Parameters:

- \triangleright Proportion of patches shuffled across diff. images within a batch
- \triangleright Proportion of patches shuffled across diff. batches

Evaluation

Black-Box Attack (MAE Decoder)

Accuracy VS Privacy: BS --- Batch Shuffling, PS --- Patch Shuffling, PS+ --- Spectral Shuffling

➢ Visualization effect of CelebA reconstruction

 (a) Input

 (d) Blur

 (f) GN

 (e) DP

 (h) Our $PS+$ Accuracy(%) 91.05 90.36 89.58 80.67 87.35 89.18 88.21

➢ Visualization effect of CIFAR10 reconstruction

Criteo

Attacker is aware of the model weights, but not the permutation order

A stronger threat: Jigsaw solving

Train a model to guess the permutation order **Fig. 4** Failed due to random

permutation

Adaptive Attack

Attackers intercept the intermediate results throughout the whole training process

 \triangleright We use 30 rounds of intermediate results to attack

(a) Input

(a) Our BS

Failed to recover the original images

Privacy, Utility & Efficiency

Efficiency, CelebA

 \geq Our methods have negligible impact to standard split learning

Privacy, Utility & Efficiency, CelebA:

 \geq Our methods achieve ideal tradeoffs

Ablation Studies

 \triangleright k: Proportion of patches shuffled across diff. images within a batch

k: Acc.(%): 90.29 89.18 88.54 88.76

 $(a) SL$

- best tradeoff \geq a smaller k leads to
	- better reconstruction and higher accuracy

 \triangleright k = 0.6 exhibits the

 \triangleright Transferability: against black-box attacks with auxiliary datasets

(a) Input

 (b) SL

 (c) Our BS

Auxiliary set: CelebA Private set: LFW

 (b) Our BS

Auxiliary set: LFW Private set: CelebA

(a) Input (b) SL

 $(c) BS$ (d) PS+ \triangleright Adaptability: change attack model to CNN model --- Pix2Pix

An efficient privacy-preserving approach in split learning

A formal privacy guarantee based on patch shuffling

Eliminating positional correlation by spectral shuffling

