



### Privacy-Preserving Split Learning via Patch Shuffling over Transformers

Dixi Yao, Liyao Xiang, Hengyuan Xu, Hangyu Ye, Yingqi Chen

John Hopcroft Center, Shanghai Jiao Tong University, China

Sept., 2022 饮水恩源•爱国荣





### Background



### New Computational Paradigm





### Is Split learning perfect?



# **Challenge 1** Unprotected intermediate results 2 leak privacy of input !

### Challenge 2

Protect label privacy :

Labels should not leave cloud if labels are proprietary











Facial images: private on edges

#### Forward loop:

intermediate features

#### Backward loop:

error gradients

Identity: Bob belongs to a proprietary enterprise database





### Is Split learning perfect?



# Challenge 1 Unprotected intermediate results Leak privacy of input ! Challenge 3

Privacy in training

Leakage would occur in each iteration



**Challenge 2** 

Labels should not leave cloud

Protect label privacy :

if labels are proprietary

### **Protecting training data privacy is hard**

Inference: one-time transmission

Training: multiple forward & backward rounds

#### **Privacy should be guaranteed throughout training!**



Add Noise

Adding Gaussian noise barely works

Adversarial learning based methods:

Protection is effective only at convergence 🥩





### **Is Split learning perfect?**



## **Challenge 1** Unprotected intermediate results 2 Leak privacy of input ! **Challenge 3** Privacy in training Leakage would occur in each iteration

### **Challenge 2**

Protect label privacy :

Labels should not leave cloud if labels are proprietary

**Challenge 4** 

**Practicality** in deployment



### Tradeoff: Privacy, Efficiency & Accuracy

#### **DNN on thin edge devices:**

Low in efficiency --- cryptographic tools including homomorphic encryption, multi-party computation

### High training performance:

Sacrifice of accuracy --- differential privacy



### **Threat Model & Methodology**









Objective: minimize task loss and maximize attacker reconstruction loss









#### White-box attack

#### **Black-box attack**

Attacker's prior:

- ✓ Intermediate features
- ✓ Model weights

Attacker's prior:

- ✓ Intermediate features
- ✓ Auxiliary datasets
- × Model weights

#### **Adaptive attack**

Similar to Black-box

Use features from multiple rounds

Attacker's prior:

- ✓ multiple features
- ✓ Auxiliary datasets
- × Model weights







Transformer has shown a superior accuracy

ImageNet-1k (from paperswithcode.com)

#### **Shuffling Invariance**

#### **Robustness against Patch Dropping**





Images from Naseer, Muhammad Muzammal, Kanchana Ranasinghe, Salman H. Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. "Intriguing properties of vision transformers." Advances in Neural Information Processing Systems 34 (2021).



**Definition 1.** (Neighbouring Permutations) We divide a single instance into N patches, and the permutations of these N patches constitute S. Any two permutation  $\sigma$ ,  $\sigma' \in S$  are defined to be neighboring.

**Definition 2.** ( $\sigma$ -privacy) Given private dataset X and a set of permutations S, a randomized mechanism  $\mathcal{A} : f(X) \mapsto \mathcal{V}$ is  $\sigma$ -private if for all  $x \in X$ , neighbouring permutations  $\sigma$ and  $\sigma'$  and any  $z \in \mathcal{V}$ , we have

$$\Pr[\mathcal{A}(\sigma(f(x))) = z] = \Pr[\mathcal{A}(\sigma'(f(x))) = z].$$
(6)

Each permutation has the same likelihood to generate z.



### Patch Shuffling







### **Batch Shuffling VS Spectral Shuffling**



Batch Shuffling: Parameters:

- Proportion of patches shuffled across diff. images within a batch
- Proportion of patches shuffled across diff. batches





### **Evaluation**



### **Black-Box Attack (MAE Decoder)**



#### Accuracy VS Privacy: BS --- Batch Shuffling, PS --- Patch Shuffling, PS+ --- Spectral Shuffling

Visualization effect of CelebA reconstruction



(b) SL

91.05

(a) Input Accuracy(%)





(d) Blur 89.58



80.67

(f) GN 87.35



89.18



(h) Our PS+ 88.21

 $\succ$  Visualization effect of CIFAR10 reconstruction

90.36



Criteo

| Methods   Utility: Acc $\uparrow$   Privacy: MSE $\uparrow$ |              |               |
|-------------------------------------------------------------|--------------|---------------|
| SL                                                          | <b>77.81</b> | 0.0012        |
| Our PS                                                      | 77.78        | <b>0.0015</b> |
| GN                                                          | 77.28        | 0.0012        |



#### Attacker is aware of the model weights, but not the permutation order



A stronger threat: Jigsaw solving

Train a model to guess the permutation order



Failed due to random permutation



### **Adaptive Attack**

Attackers intercept the intermediate results throughout the whole training process

> We use 30 rounds of intermediate results to attack



(a) Input



(a) Our BS

Failed to recover the original images





### Privacy, Utility & Efficiency

#### Efficiency, CelebA



Our methods have negligible impact to standard split learning Privacy, Utility & Efficiency, CelebA:

Our methods achieve ideal tradeoffs



### **Ablation Studies**

> k: Proportion of patches shuffled across diff. images within a batch





89.18

0.5 k: Acc.(%): 90.29





0.75 88.54

(a) SL



0.85

88.76



- **Original Input**
- > k = 0.6 exhibits the best tradeoff
- $\succ$  a smaller k leads to better reconstruction and higher accuracy

> Transferability: against black-box attacks with auxiliary datasets



(a) Input

(b) SL

(c) Our BS

Auxiliary set: CelebA Private set: LFW



(b) Our BS

Auxiliary set: LFW Private set: CelebA



(a) Input (b) SL



(c) BS (d) PS+ > Adaptability: change attack model to CNN model ---Pix2Pix





### An efficient privacy-preserving approach in split learning

### A formal privacy guarantee based on patch shuffling

## Eliminating positional correlation by spectral shuffling



