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Background
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New Computational Paradigm

CV NLP Recommendation

Compute on edge: resource constrained

Upload to cloud: privacy leakage



Is Split learning perfect?

Challenge 1

Unprotected intermediate results : 

leak privacy of input !
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Challenge 2

             Protect label privacy : 

 Labels should not leave cloud 
             if labels are proprietary



An Example

Forward loop:  

intermediate features 

Backward loop:  

error gradients

Facial images: 
private on edges

Identity: 
belongs to a proprietary 
enterprise database

Bob

Forward loop:  

intermediate features 

Backward loop:  

error gradients



Is Split learning perfect?

Challenge 1

Unprotected intermediate results : 

Leak privacy of input !
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Challenge 2

             Protect label privacy : 

 Labels should not leave cloud 
             if labels are proprietary

Challenge 3 

Privacy in training 

Leakage would occur in each iteration



Protecting training data privacy is hard
Inference: one-time transmission  

Training: multiple forward & backward rounds

Privacy should be guaranteed throughout training!

Add Noise      Adv@1k iteration    Adv@20k iteration    Adv@convergence

Adding Gaussian noise 
barely works

Adversarial learning based methods: 

Protection is effective only at convergence 🤣



Is Split learning perfect?

Challenge 1

Unprotected intermediate results : 

Leak privacy of input !
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Challenge 2

             Protect label privacy : 

 Labels should not leave cloud 
             if labels are proprietary

Challenge 3 

Privacy in training 

Leakage would occur in each iteration

Challenge 4 

Practicality in deployment



Tradeoff: Privacy, Efficiency & Accuracy

DNN on thin edge devices: 
 Low in efficiency --- cryptographic tools including 
     homomorphic encryption, multi-party computation

High training performance: 
 Sacrifice of accuracy --- differential privacy



Threat Model & Methodology
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Overview

Objective: minimize task loss and maximize attacker reconstruction loss



Threat Model
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White-box attack Black-box attack Adaptive attack

Similar to Black-box 

Use features from multiple 
rounds 

Attacker’s prior: 
✓ Intermediate features 
✓ Model weights

Attacker’s prior: 
✓ Intermediate features 
✓ Auxiliary datasets 

×  Model weights

Attacker’s prior: 
✓ multiple features 
✓ Auxiliary datasets 
×  Model weights



Property of Transformer

ImageNet-1k (from paperswithcode.com)

Transformer has shown  
a superior accuracy

Shuffling Invariance Robustness against Patch Dropping

Images from Naseer, Muhammad Muzammal, Kanchana Ranasinghe, Salman H. Khan, Munawar Hayat, Fahad Shahbaz Khan, and 
Ming-Hsuan Yang. "Intriguing properties of vision transformers." Advances in Neural Information Processing Systems 34 (2021).



Privacy Definition

a permutation (1,4,8,9,7,2,3,5,6)

Each permutation has the same likelihood to 
generate z.



Patch Shuffling

Apply a permutation to shuffle patches within an image

Each permutation has Pr = 1/N! （e.g., N=196） to produce z



Spectral Shuffling: transform to spectral domain before patch shuffling

Batch Shuffling VS Spectral Shuffling

Batch Shuffling: 
Parameters:  
➢ Proportion of patches shuffled 

across diff. images within a batch 
➢ Proportion of patches shuffled 

across diff. batches

Position Embedding

Further eliminate positional  
correlation between patches
So that each permutation has 
equal prob. to occur
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Black-Box Attack (MAE Decoder)
Accuracy VS Privacy: BS --- Batch Shuffling, PS --- Patch Shuffling, PS+ --- Spectral Shuffling

➢ Visualization effect of CelebA reconstruction

➢ Visualization effect of CIFAR10 reconstruction

Accuracy(%)          98.36               96.99              96.16

Criteo

Accuracy(%) 91.05              90.36              89.58                80.67               87.35                89.18                88.21  



White-Box Attack

Attacker is aware of the model weights, but not the permutation order

A stronger threat: Jigsaw solving 

Train a model to guess the permutation order Failed due to random 
permutation



Adaptive Attack

Attackers intercept the intermediate results throughout the whole 
training process

➢ We use 30 rounds of intermediate results to attack

Failed to recover the original images



Privacy, Utility & Efficiency

Efficiency, CelebA

➢ Our methods have negligible impact to 
standard split learning

Privacy, Utility & Efficiency, 
CelebA: 
➢ Our methods achieve ideal tradeoffs

Computaional and memory 
costs at the edge, lower is better

Convergence curves



Ablation Studies
➢ k: Proportion of patches shuffled across diff. images within a batch

k:
Acc.(%): 90.29 88.7688.5489.18

➢ k = 0.6 exhibits the 
best tradeoff 

➢ a smaller k leads to 
better reconstruction 
and higher accuracy

➢ Transferability: against black-box attacks with 
auxiliary datasets

Auxiliary set: CelebA   
Private set: LFW

Auxiliary set: LFW  
Private set: CelebA

➢ Adaptability: 
change attack 
model to CNN 
model --- 
Pix2Pix

    0.5              0.6        0.75                  0.85      Original Input



23

An efficient privacy-preserving approach in split learning

A formal privacy guarantee based on patch shuffling

Eliminating positional correlation by spectral shuffling

Takeaways



Thanks!  


